- Что определяет мощность ветрогенератора
- Расчет мощности ветроколеса
- Из реальной жизни практический расчет мощности ветрогенератора.
- Реальная мощность самодельного ветрогенератора.
- Правильный расчет ветрогенератора: что нужно учитывать при подсчете мощности ветроколеса?
- Важный нюанс при покупке ветряка
- Расчет мощности ветрогенератора
- Как произвести?
- Что нужно учитывать?
- Реальная мощность самодельного ветрогенератора
- Расчет параметров ветроколеса
- Сколько экономии энергии дает ветряк?
- Сколько электроэнергии вырабатывает?
- Минимальная скорость ветра для ветряка
Что определяет мощность ветрогенератора
Мощность ветрогенератора конечно зависит от скорости ветра, точно так-же как мощность солнечной батареи зависит от яркости солнечного света, или мощность гидротурбины от скорости потока воды. Но какая зависимость ветрогенератора от скорости ветра нам не понятно, так-как мы не знаем сколько энергии в самом ветре. Энергии в ветре очень много, к примеру на рекламный щит шириной и высотой один метр при скорости ветра 5 м/с оказывается давление мощностью 75 ватт. А если щит будет размером три на три метра то мощность ветра при 5 м/с составит 675 ватт. При этом если скорость ветра снизится в два раза то мощность упадёт в восемь, а если ветер будет дуть с в два раза большей скоростью, то мощность давления на щит увеличится в восемь раз. Зависимость мощности ветра с увеличением скорости кубическая.
Но винт горизонтального ветряка или ротор вертикального ветрогенератора это вращающаяся конструкция, она испытывает то-же давление что и щит, но во вращение не может трансформировать всю энергию ветра. Лучшие горизонтальные ветрогенераторы могут брать от ветра до 47% энергии, а ветряки типа «бочка» до 25%. Обычный средний КПД горизонтального ветряка 0.4, и он не постоянный, так-как лопасти имеют фиксированные аэродинамические формы, которые с максимальным КПД могут работать только при определённой скорости ветра. Тоже самое и вертикальными роторами так-как их лопатки тоже имеют фиксированный размер.
На этом этапе я думаю понятно что мощность ветрогенератора определяет сила ветра или по другому скорость ветрового потока. Также размер винта определяет с какой площади ветрового потока можно брать энергию. Понятно что чем больше винт тем больше он «поймает» ветра, и отнимет у него энергию. Третье это КПД винта, это тоже немаловажный фактор, чем выше КПД тем больше мощности у винта и дешевле сам ветрогенератор.
К примеру винт диаметром 3 метра при ветре 5 м/с имеет мощность примерно 210 ватт, а при 10 м/с его мощность составит 1,8 кВт. Если конечно его КПД будет высокий. Вообще неправильно говорить КПД, нужно говорить коэффициент использования энергии ветра, то есть КИЭВ винта. Винт ветрогенератора это довольно сложная штука, и кроме диаметра винта есть такое понятие как быстроходность винта, это нужно будет чтобы подобрать правильный генератор. Быстроходность это скорость кончиков лопастей относительно скорости ветра, обычно кончики лопастей в рабочем режиме движутся быстрей скорости ветра в 5-7 раз для трехлопастных винтов. Это достаточно сложная наука и вы вначале ничего не поймёте в этом. Ниже таблица мощности винтов в зависимости от диаметра винта и скорости ветра при КИЭВ 0,45.
Далее у нас на очереди генератор, средний КПД обычно у генераторов 0.8, но этот КПД зависит от оборотов. Генератор может иметь и максимальный КПД 96%, но только в узком диапазоне оборотов, и это зависит от сопротивления нагрузки на генератор, и сопротивление обмотки генератора. Так-же КПД генератора может быть ниже 50% если он неправильно нагружен, но он не может быть правильно нагружен так-как на разных оборотах ему нужна разная нагрузка, а обороты разные потому что скорость ветра меняется, меняются и обороты винта, а следовательно и генератора.
Это в общем тоже сложно, генератор по мощности должен подходить винту, иметь чуть меньшую мощность чем винт в широком диапазоне оборотов, тогда вся эта цепочка будет работать эффективно.
Мощность ветрогенератора определяет:
Источник
Расчет мощности ветроколеса
Методика расчета мощности ветроколеса ветрогенератора относительно точная и довольно простая.
Ниже формула расчета мощности энергии ветра P=0.6*S*V^3, где
P- мощность Ватт
S- площадь ометания кв.м.
V^3- Скорость ветра в кубе м/с
r- радиус окружности в квадрате
К примеру если взять площадь винта 3кв.м. и посчитать мощность на ветре 10 м/с, то получится 0,6*3*10*10*10=1800ватт. Но это мощность ветрового потока, а винт заберет часть мощности, которая в теории может достигать 57%, но на практике для горизонтальных трехлопастных ветрогенераторов этот параметр 35-45%. А для вертикальных типа Савониус 15-25%.
Тогда в среднем для горизонтального трехлопастного винта коэффициент использования энергии ветра поставим 40% и посчитаем, 1800*0,4= 720 ватт. Винт заберет 720 ватт у ветра, но еще есть КПД генератора, который у генераторов на постоянных магнитах примерно 0,8 , а с электровозбуждением 0,6. Тогда 720*0,8=576 ватт.
Но на практике все может быть гораздо хуже, так-как генератор не во всех режимах работы имеет высокий КПД, так-же eсть потери в проводах, на диодном мосту, в контроллере, и в аккумуляторе. Поэтому можно скинуть смело еще 20% мощности и останется примерно 576-20%=640,8 ватт.
У вертикального ветрогенератора это параметр будет еще меньше так-как во-первых КИЭВ всего 20%, а так-же мультипликатор, КПД которого 70-90%. Тогда изначальные из 1800 ватт мощности ветра лопасти отнимут 1800*0,2=360ватт. Минус КПД генератора 0,8 и мультипликатора 0,8 равно 360*0,8*0,8=230,4ватт. И еще минус 20% на потери в проводах, диодном мосту, контроллере и АКБ., и останется 230,4-20%=183,6ватт.
Из реальной жизни практический расчет мощности ветрогенератора.
Эту формулу можно встретить на многих форумах и сайтах по ветрогенераторам. Для проверки формулы я хочу сравнить реальные данные двух ветрогенераторов небольшой мощности с почти одинаковыми по площади винтами, но один горизонтальный, а второй вертикальный.
На фото два реальных самодельных ветрогенератора, первый горизотальный трехлопастной с диаметром винта 1,5м., второй вертикальный шириной 1м высотой 1,8м. Не считая данные сразу напишу что мощность горизонтального на ветру 10м/с около 90 ватт, и вертикального 60ватт. КИЭВ первого так-как лопасти сделаны на глазок наверно 0,3 , а второго вертикального вроде хорошо сделанного 0,2.
Теперь вычислим площадь винта ометаемую ветром, для первого это 1,76м, для второго вертикального 1,8м.
значит для горизонтального 0,6*1,76*10*10*10=1056*0,3*0,8-20%=202ватт.
значит для вертикального 0,6*1,8*10*10*10=1080*0,2*0,8-20%=138ватт.
Получились вот такие теоретические данные, но зная реальные становится становится понятно что КИЭВ обоих ветрогенераторов и КПД их генераторов далек от хороших показателей. В таком случае для большинства самодельных генераторов, которые делаются на глазок без расчетов можно смело скидывать еще 50% и получить в итоге реальную ожидаемую мощность от ветроустановки с ветроколесом определенной площади.
Реальная мощность самодельного ветрогенератора.
Горизонтальный ветрогенератор мощностью 202ватт.-50%=101ватт, а реальных 90ватт.
Вертикальный ветрогенератор мощностью 138ватт.-50%=69ватт,а реальных 60ватт.
Уже продолжительное время интересуясь ветрогенераторами я сделал ( может и ошибочный) вывод что большинство самодельных ветроустановок далеки от заводских аналогов. Только лишь с применением точных расчетов можно добиться высокого КПД всей ветроустановки и это удается не многим.
А с большинства самодельных ветрогенераторов можно при расчете мощности смело скидывать половину ожидаемой мощности и сразу делать ветрогенератор в два раза мощнее чем нужен, чтобы компенсировать все недочеты домашней сборки и применяемых материалов.
Источник
Правильный расчет ветрогенератора: что нужно учитывать при подсчете мощности ветроколеса?
Обновлено: 9 января 2021
Важный нюанс при покупке ветряка
Прежде чем приобрести или изготовить ветрогенератор, необходимо определиться с его мощностью, собственной потребностью в энергии и прочих параметрах устройства. Это принципиально важно при покупке ветряка, так как цены настолько велики, что приходится покупать устройство, которое пользователь сможет осилить по финансам. В некоторых случаях возможности оказываются настолько низкими, что приобретение уже не имеет смысла.
Расчет мощности ветрогенератора
Самостоятельное изготовление ветряка также нуждается в предварительном расчете. Никому не хочется потратить время и материалы на изготовление неведомо чего, хочется иметь представление о возможностях и предполагаемой мощности установки заранее. Практика показывает, что ожидания и реальность между собой соотносятся слабо, установки, созданные на основе приблизительных прикидок или предположений, не подкрепленных точным расчетами, выдают слабые результаты.
Произвести точный расчет с учетом всех факторов, воздействующих на ветряк, достаточно сложно. Для неподготовленных в теоретическом отношении мастеров такой расчет слишком сложен, он требует обладания множеством данных, недоступных без специальных измерений или расчетов.
Поэтому обычно используются упрощенные способы расчетов, дающие достаточно близкие к истине результаты и не требующие использования большого количества данных.
Как произвести?
Для расчета ветрогенератора надо произвести следующие действия:
- определить потребность дома в электроэнергии. Для этого необходимо подсчитать суммарную мощность всех приборов, аппаратуры, освещения и прочих потребителей. Полученная сумма покажет величину энергии, необходимой для питания дома
- полученное значение необходимо увеличить на 15-20 %, чтобы иметь некоторый запас мощности на всякий случай. В том, что этот запас нужен, сомневаться не следует. Наоборот, он может оказаться недостаточным, хотя, чаще всего, энергия будет использоваться не полностью
- зная необходимую мощность, можно прикинуть, какой генератор может быть использован или изготовлен для решения поставленных задач. От возможностей генератора зависит конечный результат использования ветряка, если они не удовлетворяют потребностям дома, то придется либо менять устройство, либо строить дополнительный комплект
- расчет ветроколеса. Собственно, этот момент и является самым сложным и спорным во всей процедуре. Используются формулы определения мощности потока
Для примера рассмотрим расчет простого варианта. Формула выглядит следующим образом:
Где P — мощность потока.
K — коэффициент использования энергии ветра (величина, по своей сути близкая к КПД) принимается в пределах 0,2-0,5.
R — плотность воздуха. Имеет разные значения, для простоты примем равную 1,2 кг/м 3 .
V — скорость ветра.
S — площадь покрытия ветроколеса (покрываемая вращающимися лопастями).
Считаем: при радиусе ветроколеса 1 м и скорости ветра 4 м/с
P = 0,3 × 1,2 × 64 × 1,57= 36,2 Вт
Результат показывает, что мощность потока равняется 36 Вт. Этого очень мало, но и метровая крыльчатка слишком мала. На практике используются ветроколеса с размахом лопастей от 3-4 метров, иначе производительность будет слишком низкой.
Что нужно учитывать?
При расчете ветряка следует учитывать особенности конструкции ротора. Существуют крыльчатки с вертикальным и горизонтальным типом вращения, имеющие разную эффективность и производительность. Наиболее эффективными считаются горизонтальные конструкции, но они имеют потребности в высоких точках установки.
Сооружение мачты может обойтись в большую сумму денег и значительные вложения труда. Кроме того, обслуживание ветряка, расположенного на высоте около 10 м над поверхностью земли чрезвычайно сложно и опасно.
Не менее важным будет обеспечение достаточной мощности крыльчатки для вращения ротора генератора. Устройства с тугими роторами, позволяющие получать хороший выход энергии, требуют немалой мощности на валу, что может обеспечить только крыльчатка с большой площадью и диаметром лопастей.
Не менее важным моментом являются параметры источника вращения — ветра. Перед производством расчетов следует как можно подробнее узнать о силе и преобладающих направлениях ветра в данной местности. Учесть возможность ураганов или шквалистых порывов, узнать, с какой частотой они могут возникать. Неожиданное возрастание скорости потока опасно разрушением ветряка и выводом из строя преобразующей электроники.
Реальная мощность самодельного ветрогенератора
Особенностью самодельных устройств является использование подручных материалов и устройств. В таких условиях обеспечить полноценное соответствие проектным данным не всегда удается. При этом, разница в расчетных и реальных показателях может оказаться как отрицательной, так и положительной.
Величины, определяющие возможности комплекта, это мощность ветроколеса и генератора. Насколько они будут соответствовать друг другу, такая и общая мощность ветрогенератора будет получена в результате.
Например, если генератору для номинальной производительности требуется скорость вращения в 2000 об/мин, то никакое ветроколесо не сможет обеспечить нужные значения.
Поэтому прежде всего следует подбирать тихоходные образцы генераторов, способные на выработку больших количеств энергии при низких скоростях вращения. Для этого модернизируются готовые устройства (например, устанавливаются неодимовые магниты на ротор автомобильных генераторов), изготавливаются собственные конструкции на базе тех же неодимовых магнитов с заранее подсчитанной мощностью и производительностью.
Расчет параметров ветроколеса
Расчет ветроколеса имеет важное значение при создании ветрогенератора. Именно крыльчатка принимает на себя поток ветра, передает его энергию в виде вращательного движения на ротор генератора. Для расчета потребуется, прежде всего, знание параметров генератора — мощность, номинальная скорость вращения ротора и т.д.
Следует учитывать, что увеличение количества лопастей снижает скорость вращения, но увеличивает мощность вращательного движения. Соответственно, малое число лопастей надо применять на быстроходных генераторах, а большое количество —торах, нуждающихся в большом усилии вращения.
Формула быстроходности ветроколеса выглядит следующим образом:
Где Z — искомая величина (быстроходность),
L — длина окружности, описываемой лопастями.
W — частота (скорость) вращения крыльчатки.
V — скорость ветра.
Специалисты рекомендуют для самостоятельного изготовления выбирать многолопастные образцы с количеством лопастей от 5 штук. Они не требовательны к балансировке, имеют более стабильную аэродинамику и более активно принимают на себя энергию воздушного потока.
Сколько экономии энергии дает ветряк?
Величина экономии, полученной от использования ветрогенератора, рассчитывается по собственным данным. Она складывается, с одной стороны из расходов на приобретение и сборку ветряка или его деталей, расходов на обслуживание комплекта. С другой стороны, учитывается стоимость сетевой электроэнергии в данном регионе, либо цена подключения и прочие расходы, связанные с этим.
Разница полученных величин и будет являться величиной экономии. Необходимо учесть также отсутствие возможности для подключения в некоторых районах, когда ветрогенератор становится единственным доступным вариантом. В таких случаях разговор об экономии становится неуместным.
Сколько электроэнергии вырабатывает?
Количество вырабатываемой энергии зависит от параметров крыльчатки и собственно генератора. Максимально возможным количеством следует считать номинальные данные генератора, уменьшенные на величину КИЭВ крыльчатки. На практике показатели намного ниже, так как в получении результата большое значение имеет скорость ветра, которую невозможно заранее предсказать.
Кроме того, имеются различные тонкие эффекты, в сумме оказывающие заметное влияние на конечную производительность ветряка. Принципиально важными значениями являются диаметр крыльчатки и скорость ветра, от них напрямую зависит количество полученной энергии.
Минимальная скорость ветра для ветряка
Минимальная скорость ветра — в данном случае это величина, при которой лопасти ветряка начинают вращаться. Это значение показывает степень чувствительности крыльчатки, но на конечный результат влияет слабо. Генератор имеет собственные потребности, для него само по себе вращение еще не решает все вопросы.
Требуется определенная скорость и стабильность движения, отсутствие резких рывков. Рассматривать минимальную скорость вращения следует только с позиций общей эффективности рабочего колеса, позволяющей оценивать его способность обеспечить выработку энергии на слабых потоках.
Источник