- Схема контроллера литий-ионного аккумулятора
- Устройство и принцип работы защитного контроллера Li-ion/polymer аккумулятора
- Защита от перезаряда (Overcharge Protection).
- Защита от переразряда (Overdischarge Protection).
- Микросхемы управления зарядом аккумуляторов компании ON Semiconductor
- Основные типы применяемых аккумуляторов
- MC33340/42 — контроль заряда NiCd и NiMH аккумуляторов
- NCP1835B — микросхема для заряда Li-Ion и Li-Pol аккумуляторов
- NCP349 и NCP360 — защита от перенапряжения с интегрированным MOSFET-транзистором
- Заключение
Схема контроллера литий-ионного аккумулятора
Устройство и принцип работы защитного контроллера Li-ion/polymer аккумулятора
Если расковырять любой аккумулятор от сотового телефона, то можно обнаружить, что к выводам ячейки аккумулятора припаяна небольшая печатная плата. Это так называемая схема защиты, или Protection IC.
Из-за своих особенностей литиевые аккумуляторы требуют постоянного контроля. Давайте разберёмся более детально, как устроена схема защиты, и из каких элементов она состоит.
Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки («банки») на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая, а другая исполнительная – сборка двух MOSFET-транзисторов.
На фото показана плата контроллера заряда от аккумулятора на 3,7V.
Микросхема с маркировкой DW01-P в небольшом корпусе – это по сути «мозг» контроллера. Вот типовая схема включения данной микросхемы. На схеме G1 — ячейка литий-ионного или полимерного аккумулятора. FET1, FET2 — это MOSFET-транзисторы.
Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.
Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.
Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.
Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.
Тот транзистор (FET1), что подключен к выводу OD (Overdischarge) микросхемы DW01-P, контролирует разряд аккумулятора – подключает/отключает нагрузку. А тот (FET2), что подключен к выводу OC (Overcharge) – подключает/отключает источник питания (зарядное устройство). Таким образом, открывая или закрывая соответствующий транзистор, можно, например, отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.
Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты вцелом.
Защита от перезаряда (Overcharge Protection).
Как известно, перезаряд литиевого аккумулятора свыше 4,2 – 4,3V чреват перегревом и даже взрывом.
Если напряжение на ячейке достигнет 4,2 – 4,3V (Overcharge Protection Voltage — VOCP), то микросхема управления закрывает транзистор FET2, тем самым препятствуя дальнейшему заряду аккумулятора. Аккумулятор будет отключен от источника питания до тех пор, пока напряжение на элементе не снизится ниже 4 – 4,1V (Overcharge Release Voltage – VOCR) из-за саморазряда. Это только в том случае, если к аккумулятору не подключена нагрузка, например он вынут из сотового телефона.
Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается, когда напряжение на ячейке упадёт ниже 4,2V.
Защита от переразряда (Overdischarge Protection).
Если напряжение на аккумуляторе падает ниже 2,3 – 2,5V (Overdischarge Protection Voltage — VODP), то контроллер выключает MOSFET-транзистор разряда FET1 – он подключен к выводу DO.
Далее микросхема управления DW01-P перейдёт в режим сна (Power Down) и потребляет ток всего 0,1 мкА. (при напряжении питания 2V).
Тут есть весьма интересное условие . Пока напряжение на ячейке аккумулятора не превысит 2,9 – 3,1V (Overdischarge Release Voltage — VODR), нагрузка будет полностью отключена. На клеммах контроллера будет 0V. Те, кто мало знаком с логикой работы защитной схемы могут принять такое положение дел за «смерть» аккумулятора. Вот лишь маленький пример.
Миниатюрный Li-polymer аккумулятор 3,7V от MP3-плеера. Состав: управляющий контроллер — G2NK (серия S-8261), сборка полевых транзисторов — KC3J1.
Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.
При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.
Чтобы контроллер вновь подключил аккумулятор к «внешнему миру», то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 – 3,1V (VODR).
Тут возникает весьма резонный вопрос.
По схеме видно, что выводы Стока (Drain) транзисторов FET1, FET2 соединены вместе и никуда не подключаются. Как же течёт ток по такой цепи, когда срабатывает защита от переразряда? Как нам снова подзарядить «банку» аккумулятора, чтобы контроллер опять включил транзистор разряда — FET1?
Дело в том, что внутри полевых транзисторов есть так называемые паразитные диоды – они являются результатом технологического процесса изготовления MOSFET-транзисторов. Вот именно через такой паразитный (внутренний) диод транзистора FET1 и будет течь ток заряда, так как он будет включен в прямом направлении.
Если порыться в даташитах на микросхемы защиты Li-ion/polymer (в том числе DW01-P, G2NK), то можно узнать, что после срабатывания защиты от глубокого разряда, действует схема обнаружения заряда — Charger Detection. То есть при подключении зарядного устройства схема определит, что зарядник подключен и разрешит процесс заряда.
Зарядка до уровня 3,1V после глубокого разряда литиевой ячейки может занять весьма длительное время — несколько часов.
Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6. О том, как это сделать, я уже рассказывал здесь.
Именно этим методом мне удалось восстановить Li-polymer 3,7V аккумулятор от MP3-плеера. Зарядка от 2,7V до 4,2V заняла 554 минуты и 52 секунды, а это более 9 часов ! Вот столько может длиться «восстановительная» зарядка.
Кроме всего прочего, в функционал микросхем защиты литиевых акумуляторов входит защита от перегрузки по току (Overcurrent Protection) и короткого замыкания. Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки. При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.
Источник
Микросхемы управления зарядом аккумуляторов компании ON Semiconductor
Интегральные схемы управления питанием от ON Semiconductor (ONS) уже хорошо известны отечественным разработчикам. Это AC/DC-преобразователи и ШИМ-контроллеры, корректоры коэффициента мощности, DC/DC-преобразователи и, конечно, линейные регуляторы. Однако практически ни одно портативное устройство не может обойтись без аккумулятора и, соответственно, без микросхем для его заряда и защиты. Компания ONS имеет в линейке продукции ряд решений для управления зарядом аккумуляторов, которые традиционно для ONS сочетают достаточную функциональность с невысокой стоимостью и простотой применения.
Основные типы применяемых аккумуляторов
В современной электронике наиболее распространены NiCd/NiMH и Li-Ion/Li-Pol аккумуляторы. Каждый из них обладает своими преимуществами и недостатками. Никель-кадмиевые (NiCd) аккумуляторы дешевы, а также имеют самое большое количество циклов разряда/заряда и большое значение нагрузочного тока. Основными недостатками являются: высокий саморазряд, а также «эффект памяти», который приводит к частичной потере емкости при частом заряде не до конца разряженного аккумулятора.
Никель-металлогидридные (NiMH) аккумуляторы — это попытка устранения недостатков NiCd, в частности «эффекта памяти». Данные аккумуляторы менее критичны к заряду после неполной разрядки и практически в два раза превосходят NiCd по величине удельной емкости. Не обошлось и без потерь, NiMH аккумуляторы обладают меньшим числом циклов разряд/заряд и более высоким саморазрядом по сравнению с NiCd.
Литий-ионные (Li-Ion) аккумуляторы обладают самой высокой плотностью энергии, что позволяет им превосходить другие типы аккумуляторов по величине емкости при тех же габаритных размерах. Низкий саморазряд и отсутствие «эффекта памяти» делают этот тип аккумуляторов неприхотливым в использовании. Однако для обеспечения безопасности использования литий-ионные аккумуляторы требуют применения технологий и конструктивных решений (полиолефиновые пористые пленки для изоляции положительного и отрицательного электродов, наличие терморезистора и предохранительного клапана для сброса избыточного давления), которые приводят к увеличению стоимости аккумуляторов на основе лития по сравнению с другими элементами питания.
Литий-полимерные (Li-Pol) аккумуляторы — это попытка решить проблему безопасности аккумуляторов на основе лития путем использования твердого сухого электролита вместо электролита в виде геля в Li-Ion. Такое решение позволяет получить схожие с Li-Ion аккумуляторами характеристики при меньшей стоимости. Помимо повышенной безопасности, использование твердого электролита позволяет уменьшить толщину аккумулятора (до 1,5 мм). Единственным недостатком по сравнению с Li-Ion аккумуляторами является менее широкий диапазон рабочих температур, в частности Li-Pol аккумуляторы не рекомендуется заряжать при минусовых температурах.
MC33340/42 — контроль заряда NiCd и NiMH аккумуляторов
В современных портативных приложениях требуется максимально быстрый заряд аккумулятора, предотвращение перезаряда, максимальный срок службы и предотвращение потери емкости. MC33340 и MC33342 — контроллеры заряда от ON Semiconductor, которые сочетают в себе все, что необходимо для быстрого заряда и защиты NiCd и NiMH аккумуляторов.
Контроллеры МС33340/42 реализуют:
- быстрый заряд и «капельную» подзарядку (trickle charge);
- окончание зарядки по изменению напряжения и температуры;
- детектирование одноразовых батарей и отказ от их зарядки;
- программируемое время быстрой зарядки от одного до четырех часов;
- детектирование перезаряда и недозаряда батареи, перегрева и перенапряжения по входу;
- паузу перед отключением зарядки при детектировании по изменению напряжения (177 с для MC33340 и 708 с для MC33342).
Данные контроллеры в сочетании с внешним линейным или импульсным преобразователем образуют законченную систему для зарядки аккумуляторов. Пример такой зарядной схемы с использованием классического стабилизатора LM317 показан на рис. 1.
Рис. 1. Схема включения MC33340 и MC33342
LM317 в данной схеме работает как стабилизированный источник тока с установкой зарядного тока резистором R7:
Ichg(fast) = (Vref + IadjR8)/R7. Ток капельной подзарядки устанавливается резистором R5:
Ichg(trickle) = (Vin — Vf(D3) — Vbatt)/R5. Делитель R2/R1 должен быть рассчитан таким образом, чтобы при полном заряде аккумулятора на входе Vsen было меньше 2 В:
С помощью выводов t1, t2, t3 трехбитной логикой (ключами на схеме) устанавливается либо время заряда 71…283 мин, либо верхний и нижний пределы детектирования температуры.
На основе представленной схемы компания ON Semiconductor предлагает отладочные платы MC33340EVB и MC33342EVB.
NCP1835B — микросхема для заряда Li-Ion и Li-Pol аккумуляторов
Литиевые аккумуляторы требуют высокой стабильности зарядного напряжения, например, для аккумулятора LIR14500 от компании EEMB зарядное напряжение должно находиться в пределах 4,2±0,05 В. Для заряда аккумуляторов на основе лития ONS предлагает полностью интегрированное решение — NCP1835B. Это микросхема заряда с линейным регулятором, профилем заряда CCCV (constant current, constant voltage) и зарядным током 30…300 мА. Питание NCP1835B может осуществляться либо от стандартного AC/DC-адаптера, либо от USB-порта. Вариант схемы включения представлен на рис. 2.
Рис. 2. Схема для отладки NCP1835B
Основные характеристики:
- интегрированный стабилизатор тока и напряжения;
- возможность зарядки полностью разряженной батареи (током 30мА);
- определение окончания зарядки;
- программируемый зарядный ток;
- выходы статуса и ошибки зарядки;
- выход 2,8В для определения присутствия адаптера на входе или питания микроконтроллера током до 2мА;
- входное напряжение от 2,8 до 6,5В;
- защита от продолжительного заряда (программируемое максимальное время заряда 6,6…784 мин).
NCP349 и NCP360 — защита
от перенапряжения с интегрированным
MOSFET-транзистором
Еще одним важным моментом в системах заряда аккумуляторов является защита от превышения допустимого входного напряжения. Решения, предлагаемые ONS, отключают выход от целевой схемы в случае присутствия на входе недопустимого напряжения.
NCP349 — новинка от ONS, которая защищает от перенапряжения по входу до 28 В. Микросхема отключает выход при превышении верхнего порога входным напряжением или если нижний порог не достигнут. Также предусмотрен выход FLAG# для сигнализации перенапряжения на входе. Типовая схема применения показана на рис. 3.
Рис. 3. Схема применения NCP349
Данная микросхема доступна с различными нижними (2,95 и 3,25 В) и верхними (5,68; 6,02; 6,4; 6,85 В) порогами срабатывания, которые закодированы в наименовании. NCP360 обладает такой же функциональностью, что и NCP349, за исключением максимального напряжения на входе: 20 В.
Заключение
Компания ON Semiconductor по сравнению с конкурентами обладает не очень широкой линейкой микросхем для заряда аккумуляторов. Однако представленные решения в своем сегменте характеризуются конкурентоспособными характеристиками и ценой, а также простотой применения.
Источник