- Контроллер заряда и балансир li-ion аккумулятора 18650
- Устройство li-ion аккумулятора 18650
- Предназначение контроллера зарядки
- Особенности контроллера для зарядки li-ion аккумулятора 18650
- Виды контроллеров
- Схемы контроллеров
- Причины блокировки контроллером li-ion аккумулятора 18650
- Балансировочная плата для li-ion аккумулятора 18650
- Лучшие аккумуляторы 18650 на «Алиэкспресс»
- Как восстановить Li-ion АКБ
- Все для литиевых аккумуляторов: микросхемы STM для зарядных устройств и мониторинга батарей
- Микросхемы STBC08 и STC4054
- Микросхемы заряда батареи L6924D и L6924U
- Микросхемы заряда аккумулятора STBC21 и STw4102
- Микросхемы контроля/индикации
- CC/CV-контроллеры
- DC/DC-преобразователи для солнечных батарей
- Заключение
- Литература
Контроллер заряда и балансир li-ion аккумулятора 18650
Контроллер заряда – встроенная схема защиты в аккумуляторе, которая предотвращает его сильную разрядку или перезарядку, контролирует силу тока и температуру, задает время окончания заряда. Как работает контроллер заряда в li-ion аккумуляторе, для чего он нужен?
Устройство li-ion аккумулятора 18650
Контроллер зарядки литий-ионного аккумулятора производят корпорации: Sony, LG, Sanyo, Panasonic, Samsung, ATL, HYB. Остальные производители перекупают элементы и выдают за собственный продукт.
Максимальная емкость ионных аккумуляторов 18650 – 3600 мА-ч.; они, в отличие от батарей, могут многократно перезаряжаться. Цифра 18650 – форм-фактор, указывающий на длину аккумулятора (65 мм) и его диаметр (18 мм).
Основные характеристики литий-ионного аккумулятора 18650:
- максимально допустимое напряжение – 4,2 В (небольшие перезарядки губительно сказываются на сроке службы);
- минимально допустимое напряжение – 2,75 В (при понижении до 2 В заряд не подлежит восстановлению);
- минимально допустимая температура –20 °C 0 С (зарядить на морозе невозможно);
- максимально допустимая температура +60 °C 0 С (при превышении показателей возможны взрыв и возгорание);
- измерение емкости в ампер-часах – полная зарядка выдает 1 А тока в течение 60 минут, 2 А тока – 30 минут, 15 А тока – 4 минуты.
Литий-ионный АКБ преобразовывает химическую энергию в электрическую, поэтому возникает ток, приводящий в действие то или иное устройство. Такие батарейки оснащаются специальной защитной схемой, которая контролирует уровень ее нагрева и циклы работы. При перегреве и спаде напряжения до 2,7 В – контроллер автоматически прекращает работу АКБ.
Предназначение контроллера зарядки
Контроллер регулирует процесс заряда и разрядки аккумулятора. Если напряжение падает ниже 3 В, защита отключает банку от потребителя тока: устройство выключается. Также защитная схема предотвращает короткие замыкания. Некоторые виды защитных плат имеют терморезистор, который защищает элементы АКБ от перегрева.
Все платы осуществляют контроль за:
- переразрядом батарейки;
- перезарядом;
- током нагрузки;
- температурой.
Имея под рукой защитную плату, можно переделать старые АКБ шуруповерта, дрели на литиевые батареи, отличающиеся долгим сроком службы.
Особенности контроллера для зарядки li-ion аккумулятора 18650
Контроллер для литиевых аккумуляторов 18650 расположен сверху корпуса, чем удлиняет само устройство. Плата расположена впереди отрицательной клеммы, защищая АКБ от перезарядки/переразрядки. Основная страна-производитель – Китай.
Как только защита будет установлена, корпус помещают в специальную пленку с термоусадкой. Из-за дополнительной защитной конструкции корпус удлиняется и утолщается, в редких случаях – не помещается в гнездо. В случае применения аккумулятора 18650 для создания тока в 12 В с общим контроллером заряда прерыватели не устанавливаются.
Виды контроллеров
Контроллеры для li-ion аккумуляторов отличаются ценой, производителем и внутренними элементами.
- HX-3S-A02 (цена – 150 рублей). Производитель – Китай, внутри чип S-8254AA, который защищает литий-ионные элементы от сильного заряда/разряда, короткого замыкания. К нему можно подключить три АКБ типа 18650 (максимальный ток – 10 А). Размер защиты – 50х16 мм.
- FDC-2S-2 (цена – 50 рублей). Производитель – Китай, чип – HY2120, предотвращает сильный заряд/разряд, короткие замыкания. Возможно подключение двух АКБ типа 18650 (максимальный ток – 3А). Параметры защиты – 36х6х1 мм.
- HX-2S-01 (цена – 70 рублей). Производство – Китай, чип – HY2120, уберегает от сильного заряда/разряда, короткого замыкания. Подключаются две АКБ типа 18650 (максимальный ток – 3 А). Размер защиты – 36х6х1 мм.
- HX-3S-D01(цена – 220 рублей). Производство – Китай, чип S-8254AA, контролирует сильный заряд/разряд, короткое замыкание. К нему можно подсоединить три АКБ типа 18650 (максимальный ток – 20 А). Размер защитной платы – 51х23 мм.
- HX-3S-D02 (цена – 200 рублей). Производитель – Китай, внутри чип S-8254AA, защищает от сильного заряда/разряда, короткого замыкания. К нему подключаются три АКБ типа 18650 (максимальный ток – 10 А). Размер схемы – 50х16 мм.
- HX-4S-A01 (цена – 250 рублей). Производитель – Китай, внутри чип S-8254AA, защищает от сильного заряда/разряда, короткого замыкания. Можно подсоединить четыре АКБ типа 18650 (максимальный ток – 6 А). Размер микросхемы – 67х16мм.
Схемы контроллеров
Ошибочно думать, что контроллеры заряда-разряда существуют: разрядом управлять не нужно, ток находится в прямой зависимости от нагрузки. Главное – это контроль за напряжением и температурой, временем завершения заряда. Под таким контроллером подразумевают плату, защищающую АКБ от глубокой зарядки/разрядки.
Микросхемы состоят из различных электронных элементов, поэтому имеют вариации:
- DW01-Plus. Самая популярная и простая микросхема, находится под самоклейкой с надписями, которой обернут аккумулятор. Плата шестиногая, полевые транзисторы соединены в один корпус восьминогой сборкой. Сопротивление транзисторов создает измерительный шунт: возникает большой порог срабатывания от одного устройства к другому. В полевики встроены паразитные светодиоды, благодаря которым АКБ заряжается даже при срабатывании защиты от глубокой разрядки.
- S-8241 Series. Разработчик микросхемы – фирма SEIKO, специализирующаяся на литий-ионных и литий-полимерных аккумуляторах. Защитные ключи срабатывают при 2,3 и 4,35 вольтах и при спаде напряжения на FET1-FET2 до 200 мВ.
- LV5114OT. Защитная плата срабатывает при 2,5 и 4,25 вольтах, что предотвращает переразряд/перезаряд.
- R5421N Series. Среднее потребление энергии в рабочем состоянии – 3 мкА, в состоянии покоя – 0,3 мкА. Данная микросхема имеет ряд модификаций, которые разнятся величиной напряжения срабатывания при перезаряде.
Причины блокировки контроллером li-ion аккумулятора 18650
Главная причина – возникновение короткого замыкания из-за превышения предельно допустимого напряжения тока внутри АКБ. Микросхема разрывает электрическую цепь. Для разблокировки батареи достаточно зарядить ее.
Вторая причина – глубокий разряд аккумулятора. При глубоком некритичном разряде батарейку можно разблокировать с помощью зарядного устройства.
При разряжении до критичного состояния устройство не включится: внутренние химические процессы приводят к образованию металлических литиевых кристаллов, которые создают опасный контакт между положительным и отрицательным полюсами, приводящий к взрыву.
Балансировочная плата для li-ion аккумулятора 18650
Какую функцию выполняет балансир в литийных аккумуляторах? Если последовательно соединять несколько банок, их напряжение складывается в общую сумму, а емкость батареи равняется самой низкой из всех элементов.
Чтобы предотвратить перезаряд самой «ленивой» части, ее отключают от питания, что позволяет оставшимся частям продолжать заряжаться. Балансир контролирует равномерно распределяющийся заряд, поэтому его включают в цепи с последовательным соединением элементов. При параллельном соединении в балансировке нет необходимости: здесь равномерное распределение заряда. Балансировочная плата обычно входит в общий защитный корпус MBS и носит название «балансировочный шлейф».
Лучшие аккумуляторы 18650 на «Алиэкспресс»
На ресурсе «Алиэкспресс» можно купить разные li-ion АКБ, отличающиеся ценой и производителем. Из-за большого спроса на товар велико число подделок. Качественная модель отличается от подделки рядом признаков. Так, продукция высокого качества имеет емкость в 3600 А/ч и стоит гораздо дороже, среднего качества – 3000–3200 А/ч и стоит в несколько раз дешевле.
Как восстановить Li-ion АКБ
При полном выходе из строя батареи лучшее решение – утилизация, в ситуации крайней необходимости ее можно реанимировать различными способами:
- Помещение АКБ в морозильник: резкая смена температуры в ряде случаев приводит к его временному запуску. В морозильной камере необходимо держать ее в течение 40–50 минут, после чего извлечь и незамедлительно подключить к зарядному устройству на 5 минут. Подождать разогрева батарейки до комнатной температуры и полностью зарядить.
- Вскрытие АКБ и отсоединение защитной микросхемы. Процедура проводится крайне осторожно. Для начала необходимо измерить тестером напряжение на контактах (дальнейшие действия возможны только при нулевом показателе), отсоединить защитную плату, замерить показатели напряжения. Дальше подключить зарядное устройство к аккумулятору на 10–15 минут, установив такие показатели: 100 мА, 4,2 В. При перегреве батареи зарядку следует отсоединить. Как только она полностью зарядится, защитная схема возвращается на место.
Итак, контроллер для литий-ионных батарей выполняет важную функцию – не позволяет напряжению вырасти до 4,2 В и понизиться до 2,75 В (оптимальное напряжение для АКБ на литии – 3,7 вольта). Сильная разрядка и повышенная зарядка приводят к выходу устройства из строя.
Источник
Все для литиевых аккумуляторов: микросхемы STM для зарядных устройств и мониторинга батарей
В современных мобильных электронных устройствах, даже тех, которые спроектированы с учетом минимизации энергопотребления, использование невосстанавливаемых батарей уходит в прошлое. И с экономической точки зрения — уже на непродолжительном интервале времени суммарная стоимость необходимого количества разовых батарей быстро превысит стоимость одного аккумулятора, и с точки зрения удобства пользователя — проще перезарядить аккумулятор, чем искать, где купить новую батарейку. Соответственно, зарядные устройства для аккумуляторов становятся товаром с гарантированным спросом. Неудивительно, что практически все производители интегральных схем для устройств электропитания уделяют внимание и «зарядному» направлению.
Еще лет пять назад обсуждение микросхем для заряда аккумуляторных батарей (Battery Chargers IC) начиналось со сравнения основных типов аккумуляторов — никелевых и литиевых. Но в настоящее время никелевые аккумуляторы практически перестали использоваться и большинство производителей микросхем заряда либо полностью прекратило выпуск микросхем для никелевых батарей, либо выпускает микросхемы, инвариантные к технологии батареи (так называемые Multi-Chemistry IC). В номенклатуре компании STMicroelectronics в настоящее время присутствуют только микросхемы, предназначенные для работы с литиевыми аккумуляторами.
Коротко напомним основные особенности литиевых аккумуляторов. Достоинства:
- Высокая удельная электроемкость. Типичные значения 110…160Вт*час*кг, что в 1,5…2,0 раза превышает аналогичный параметр для никелевых батарей. Соответственно, при равных габаритах емкость литиевой батареи выше.
- Низкий саморазряд: примерно 10% в месяц. В никелевых батареях этот параметр равен 20…30%.
Недостатки литиевых батарей:
- Необходимость защиты по току и напряжению. В частности, необходимо исключить возможность короткого замыкания выводов аккумулятора, подачи напряжения обратной полярности, перезаряда.
- Необходимость защиты от перегрева: нагрев батареи выше определенного значения негативно влияет на ее емкость и срок службы.
Существуют две промышленные технологии изготовления литиевых аккумуляторов: литий-ионная (Li-Ion) и литий-полимерная (Li-Pol). Однако, поскольку алгоритмы заряда этих батарей совпадают, то микросхемы заряда не разделяют литий-ионную и литий-полимерную технологии. По этой причине обсуждение достоинств и недостатков Li-Ion- и Li-Pol-аккумуляторов пропустим, сославшись на литературу [1, 2, 3].
Рассмотрим алгоритм заряда литиевых батарей, представленный на рисунке 1.
Рис. 1. Алгоритм заряда литиевых батарей
Первая фаза, так называемый предварительный заряд, используется только в тех случаях, когда батарея сильно разряжена. Если напряжение батареи ниже 2,8 В, то ее нельзя сразу заряжать максимально возможным током: это крайне отрицательно скажется на сроке службы аккумулятора. Необходимо сначала «подзарядить» батарею малым током примерно до 3,0 В, и только после этого заряд максимальным током становится допустим.
Вторая фаза: зарядное устройство как источник постоянного тока. На этом этапе через батарею протекает максимальный для заданных условий ток. При этом, напряжение аккумулятора постепенно растет до тех пор, пока не достигнет предельного значения, равного 4,2 В. Строго говоря, по завершению второго этапа заряд можно прекратить, но при этом следует иметь в виду, что аккумулятор на данный момент заряжен примерно на 70% своей емкости. Отметим, что во многих зарядных устройствах максимальный ток подается не сразу, а плавно нарастает до максимума в течение нескольких минут — используется механизм «плавного старта» (Soft Start).
Если желательно зарядить батарею до значений емкости, близких к 100%, то переходим к третьей фазе: зарядное устройство как источник постоянного напряжения. На этом этапе к батарее приложено постоянное напряжение 4,2 В, а ток, протекающий через батарею, в процессе заряда уменьшается от максимума до некоторого заранее заданного минимального значения. В тот момент, когда значение тока уменьшается до этого предела, заряд батареи считается законченным и процесс завершается.
Напомним, что одним из ключевых параметров аккумуляторной батареи является ее емкость (единица измерения — А*час). Так, типичная емкость литий-ионного аккумулятора типоразмера ААА равна 750…1300 мА*ч. Как производная от этого параметра используется характеристика «ток 1С», это величина тока, численно равная номинальной емкости (в приведенном примере — 750…1300 мА). Значение «тока 1С» имеет смысл только как определение величины максимального тока при заряде батареи и величины тока, при которой заряд считается законченным. Принято считать, что величина максимального тока не должна превышать величины 1*1С, а заряд батареи можно считать завершенным при снижении тока до величины 0,05…0,10*1С. Но это те параметры, которые можно считать оптимальными для конкретного типа батареи. В реальности одно и то же зарядное устройство может работать с аккумуляторами различных производителей и различной емкости, при этом емкость конкретной батареи остается для зарядного устройства неизвестной. Следовательно, заряд батареи любой емкости в общем случае будет происходить не в оптимальном для батареи режиме, а в режиме, предустановленном для зарядного устройства.
Перейдем к рассмотрению линейки микросхем заряда компании STMicroelectronics.
Микросхемы STBC08 и STC4054
Эти микросхемы представляют собой достаточно простые изделия для заряда литиевых аккумуляторов. Микросхемы выполнены в миниатюрных корпусах типа DFN6 и TSOT23-5L, соответственно. Это позволяет использовать данные компоненты в мобильных устройствах с достаточно жесткими требованиями по массогабаритным характеристикам (например, сотовые телефоны, МР3-плейеры). Схемы включения STBC08 и STC4054 представлены на рисунке 2.
Рис. 2. Схемы включения микросхем STBC08 и STC4054
Несмотря на ограничения, которые накладывает минимальное количество внешних выводов в корпусах, микросхемы обладают достаточно широкими функциональными возможностями:
- Нет необходимости в применении внешнего MOSFET-транзистора, блокировочного диода и токового резистора. Как следует из рисунка 2, внешняя обвязка ограничивается фильтрующим конденсатором на входе, программирующим резистором и двумя (для STC4054- одним) индикаторными светодиодами.
- Максимальное значение тока заряда программируется номиналом внешнего резистора и может достигать значения 800мА. Факт окончания заряда определяется в тот момент, когда в режиме постоянного напряжения значение зарядного тока снизится до величины 0,1*IBAT, то есть, также задается номиналом внешнего резистора. Максимальный ток заряда определяется из соотношения:
где IBAT — ток заряда в Амперах, RPROG — сопротивление резистора в Омах, VPROG — напряжение на выходе PROG, равное 1,0 Вольта.
- В режиме постоянного напряжения на выходе формируется стабильное напряжение 4,2В с точностью не хуже 1%.
- Заряд сильно разряженных батарей автоматически начинается с режима предварительной зарядки. До тех пор, пока напряжение на выходе аккумулятора не достигнет величины 2,9В, заряд осуществляется слабым током величиной 0,1*IBAT. Подобный метод, как уже отмечалось, предотвращает весьма вероятный выход из строя при попытке заряда сильно разряженных аккумуляторов обычным способом. Кроме того, величина стартового значения зарядного тока принудительно ограничивается, что также увеличивает срок службы батарей.
- Реализован режим автоматической капельной подзарядки- при снижении напряжения батареи до 4,05В цикл заряда будет перезапущен. Это позволяет обеспечить постоянный заряд батареи на уровне не ниже 80% от его номинальной емкости.
- Защита от перенапряжения и перегрева. Если значение входного напряжения превышает определенный предел (в частности, 7,2В) или если температура корпуса превысит величину 120°С, то зарядное устройство отключается, защищая себя и аккумулятор. Разумеется, реализована также защита от низкого входного напряжения- если входное напряжение опустилось ниже определенного уровня (UVLO), то зарядное устройство также отключится.
- Возможность подключения светодиодов индикации позволяет пользователю иметь представление о текущем состоянии процесса зарядки батареи.
Микросхемы заряда батареи L6924D и L6924U
Данные микросхемы представляют собой устройства с более широкими возможностями по сравнению с STBC08 и STC4054. На рисунке 3 представлены типовые схемы включения микросхем L6924D и L6924U.
Рис. 3. Схемы подключения микросхем L6924D и L6924U
Рассмотрим те функциональные особенности микросхем L6924, которые касаются задания параметров процесса заряда батареи:
1. В обеих модификациях есть возможность задать максимальную продолжительность заряда батареи начиная с момента перехода в режим стабилизации постоянного тока (также используется термин «режим быстрой зарядки» — Fast charge phase). При переходе в этот режим запускается сторожевой таймер, запрограммированный на определенную длительность TPRG номиналом конденсатора, подключенного к выводу TPRG. Если до срабатывания данного таймера заряд батареи не будет прекращен по штатному алгоритму (снижение тока, протекающего через батарею, ниже значения IEND), то после срабатывания таймера зарядка будет прервана принудительно. При помощи этого же конденсатора задается максимальная продолжительность режима предварительной зарядки: она равна 1/8 от продолжительности TPRG. Также, если за это время не произошел переход в режим быстрой зарядки, происходит выключение схемы.
2. Режим предварительной зарядки. Если для устройства STBC08 ток в этом режиме задавался как величина, равная 10% от IBAT, а напряжение переключения в режим постоянного тока было фиксированным, то в модификации L6924U этот алгоритм сохранился без изменений, но в микросхеме L6924D оба этих параметра задаются с использованием внешних резисторов, подключаемых ко входам IPRE и VPRE.
3. Признак завершения зарядки на третьей фазе (режим стабилизации постоянного напряжения) в устройствах STBC08 и STC4054 задавался как величина, равная 10% от IBAT. В микросхемах L6924 этот параметр программируется номиналом внешнего резистора, подключаемого к выводу IEND. Кроме того, для микросхемы L6924D существует возможность снизить значение напряжения на выводе VOUT с общепринятого значения 4,2 В до значения 4,1 В.
4. Значение максимального зарядного тока IPRG в данных микросхемах задается традиционным образом — посредством номинала внешнего резистора.
Как видим, в простых «зарядках» STBC08 и STC4054 при помощи внешнего резистора задавался только один параметр — зарядный ток. Все остальные параметры были либо жестко зафиксированы, либо являлись функцией от IBAT. В микросхемах L6924 есть возможность тонкой подстройки еще нескольких параметров и, кроме того, осуществляется «страховка» максимальной продолжительности процесса зарядка батареи.
Для обеих модификаций L6924 предусмотрено два режима работы, если входное напряжение формируется сетевым AC/DC-адаптером. Первый — стандартный режим линейного понижающего регулятора выходного напряжения. Второй — режим квазиимпульсного регулятора. В первом случае в нагрузку может быть отдан ток, величина которого чуть меньше, чем величина входного тока, отбираемого от адаптера. В режиме стабилизации постоянного тока (вторая фаза — Fast charge phase) разница между входным напряжением и напряжением на «плюсе» батареи рассеивается как тепловая энергия, вследствие чего рассеиваемая мощность на этой фазе заряда максимальна. При работе в режиме импульсного регулятора в нагрузку может быть отдан ток, значение которого выше, чем значение входного тока. При этом «в тепло» уходит существенно меньшая энергия. Это, во-первых, снижает температуру внутри корпуса, а во-вторых — повышает эффективность устройства. Но при этом следует иметь в виду, что точность стабилизации тока в линейном режиме равно приблизительно 1%, а в импульсном — около 7%.
Работа микросхем L6924 в линейном и квазиимпульсном режимах иллюстрируется рисунком 4.
Рис. 4. Линейный и квазиимпульсный режим заряда в микросхемах L6924D и L6924U
Микросхема L6924U, кроме того, может работать не от сетевого адаптера, а от USB-порта. В этом случае микросхема L6924U реализует некоторые технические решения [4], которые позволяют дополнительно снизить рассеиваемую мощность за счет увеличения продолжительности зарядки.
Микросхемы L6924D и L6924U имеют дополнительный вход принудительного прерывания заряда (то есть отключения нагрузки) SHDN.
В простых микросхемах заряда температурная защита заключается в прекращении заряда при повышении температуры внутри корпуса микросхемы до 120°С. Это, конечно, лучше, чем полное отсутствие защиты, но величина 120°С на корпусе с температурой самой батареи связана более чем условно. В изделиях L6924 предусмотрена возможность подключения термистора, непосредственно связанного с температурой аккумулятора (резистор RT1 на рисунке 3). При этом появляется возможность задать температурный диапазон, в котором заряд батареи станет возможным. С одной стороны, литиевые батареи не рекомендуется заряжать при минусовой температуре, а с другой — также крайне нежелательно, если батарея при зарядке нагревается более чем до 50°С. Применение термистора дает возможность производить зарядку батареи только при благоприятных температурных условиях.
Естественно, дополнительный функционал микросхем L6924D и L6924U не только расширяет возможности проектируемого устройства, но и приводит к увеличению площади на плате, занимаемой как самим корпусом микросхемы, так и внешними элементами обвязки.
Микросхемы заряда аккумулятора STBC21 и STw4102
Это — дальнейшее усовершенствование микросхемы L6924. С одной стороны, реализован приблизительно тот же функциональный пакет:
- Линейный и квазиимпульсный режим.
- Термистор, связанный с батареей, как ключевой элемент температурной защиты.
- Возможность задания количественных параметров для всех трех фаз процесса зарядки.
Некоторые дополнительные возможности, отсутствовавшие в L6924:
- Защита от неправильной полярности.
- Защита от короткого замыкания.
- Существенным отличием от L6924 является наличие цифрового интерфейса I 2 C для задания значений параметров и других настроек. Как следствие, становятся возможными более точные настройки процесса заряда. Рекомендуемая схема включения STBC21 приведена на рисунке 5. Очевидно, что в данном случае вопрос об экономии площади платы и о жестких массогабаритных характеристиках не стоит. Но также очевидно, что применение данной микросхемы в малогабаритных диктофонах, плейерах и мобильных телефонах простых моделей не предполагается. Скорее, это аккумуляторы для ноутбуков и подобных устройств, где замена батареи- процедура нечастая, но и недешевая.
Рис. 5. Рекомендуемая схема включения STBC21
Микросхемы STBC21 и STw4102 не принадлежат к одному семейству. Несмотря на то, что их основные функциональные возможности схожи, в мелких деталях существует значительное количество различий. Микросхема STw4102, например, предоставляет более широкие возможности в «тонких» настройках практически всех возможных параметров, кроме того, реализованы дополнительные функции мониторинга батареи, имеется возможность использования внешнего MOSFET-транзистора. Однако целевая область применения обеих микросхем примерно одна и та же.
Микросхемы контроля/индикации
Основу линейки «батарейных микросхем» любого производителя составляют именно микросхемы заряда аккумуляторных батарей (Battery Chargers IC), которые и были рассмотрены выше. Но многие производители дополняют номенклатуру «сопутствующими» микросхемами, к которым можно отнести микросхемы контроля состояния батареи (Battery Status Monitor) и микросхемы индикации уровня заряда батареи (Battery Gas Gauge). В номенклатуре STMicroelectronics обе эти роли выполняют STC3100 и STC3105. Схема включения STC3105 представлена на рисунке 6.
Рис. 6. Схема включения STC3105
С функциональной точки зрения микросхема осуществляет периодические измерения значений напряжения на выходе микросхемы и тока, протекающего через нее. Полученные и обработанные данные передаются на микроконтроллер по каналу I 2 C. Данные микросхемы, с одной стороны, могут оказаться эффективным дополнением для простых микросхем заряда в приложениях, где не имеет смысла усложнять саму процедуру заряда, но может оказаться полезным расширить функции контроля над процессом. С другой стороны, интерфейс I 2 C предполагает наличие микроконтроллера, который должен получить данные и, в результате, принять какое-то решение на их основе. Но в этом случае напрашивается решение о применение интеллектуальных микросхем STBC21 и STw4102, в которых уже реализованы некоторые функции мониторинга.
CC/CV-контроллеры
Помимо функционально законченных микросхем заряда аккумуляторных батарей, компания STMicroelectronics предлагает семейство микросхем CC/CV-контроллеров, в частности — микросхем серии TSM101x. Данные микросхемы включают в себя опорный источник напряжения и два операционных усилителя, как правило, с объединенным выходом. На рисунке 7 представлен фрагмент схемы сетевого зарядного устройства для литиевой батареи с использованием контроллера TSM1012. На первом операционном усилителе (CV — Constant Voltage) реализован контур стабилизированного постоянного напряжения, на втором (CC — Constant Current) — контур стабилизированного постоянного тока. Остальные компоненты представляют собой типовую обвязку импульсного источника питания и задающие цепи.
Рис. 7. Сетевое зарядное устройство на CC/CV-контроллере TSM1012
Напомним, что цикл заряда литиевого аккумулятора состоит из двух фаз, в которых устройство выступает в качестве источника постоянного тока и одной фазы, в которой устройство выступает в качестве источника постоянного напряжения. Безусловно, проектирование зарядного устройства на базе универсальных «кирпичиков» — более хлопотное и трудоемкое занятие, нежели использование специализированных схем. Однако, в этом случае становится возможным создание устройств, в которых некоторые параметры оказываются на существенно ином качественном уровне. Так, например, в работе [5] приводится ряд решений, позволяющих существенно снизить энергопотребление сетевого зарядного устройства в режиме холостого хода. Приводятся расчеты, согласно которым, типовое решение обеспечивает значение полной потребляемой мощности, равное 440 мВт. Первоначальная оптимизация схемы с применением контроллера TMS1011 дает величину 140 мВт, а дальнейшая оптимизация схемы на контроллере TMS1012 обеспечивает дальнейшее снижение мощности до величины 104 мВт. Безусловно, в большинстве случаев можно обойтись и типовыми решениями, которые дают не рекордные, но вполне приемлемые показатели. Однако, стоит иметь в виду и тот факт, что в линейке продукции есть компоненты, позволяющие, при необходимости, разработать устройство с «элитарными» значениями отдельных параметров.
DC/DC-преобразователи
для солнечных батарей
Для большинства мобильных устройств с питанием от аккумуляторных батарей зарядное устройство выполняется в виде автономного устройства для бытовой сети переменного тока. То есть в любом случае для формирования входного постоянного напряжения для микросхемы заряда батареи требуется AC/DC-преобразователь. Компания STMicroelectronics предлагает широкий спектр подобных преобразователей, а также проверенную технологию проектирования сетевых адаптеров. Однако сетевые зарядные устройства — хотя и самое распространенное, но не единственно возможное решение. В качестве источника энергии может быть использована солнечная энергия, накапливаемая в солнечных батареях. В номенклатуре компании STMicroelectronics присутствуют микросхемы DC/DC-преобразователей для солнечных батарей, использующих алгоритм MPPT (Maximum Power Point Tracking — слежение за точкой максимальной мощности). Не вдаваясь в специфические детали, отметим, что на сегодня технология MPPT является наиболее передовой и эффективной технологией для контроллеров заряда солнечной батареи. Вычисление максимальной точки эффективности заряда от солнечного модуля позволяет повысить эффективность генерации солнечной энергии до 25…30% по сравнению с контроллерами других типов [6]. В настоящий момент STMicroelectronics выпускает две микросхемы — SPV1020 и SPV1040. Первая работает с цепочкой последовательно соединенных солнечных батарей с выходным напряжением в диапазоне 6,5…40 В. Вторая — как правило, с одной, батареей напряжением до 5,5 В. Компания STMicroelectronics также выпустила демонстрационную плату STEVAL-ISV012V1, включающую в себя MPPT DC/DC-преобразователь SPV1040 и микросхему заряда L6924D. На рисунке 8 показана демонстрационная плата.
Рис. 8. Демонстрационная плата зарядного устройства на солнечной батарее STEVAL-ISV012V1
В материале [7] указывается, что суммарная эффективность подобной связки составляет примерно 85% (для SPV1040 — 94%, для L6924D — 90%).
Заключение
Номенклатуру микросхем для заряда аккумуляторных батарей, которые предлагает компания STMicroelectronics, нельзя назвать очень широкой: линейка включает в себя восемь изделий и примерно столько же микросхем в смежных нишах. Но реальные функциональные возможности существующих изделий STMicroelectronics покрывают основные потребности рынка в зарядных микросхемах от достаточно простых изделий до высокотехнологичных решений. Возможности интеграции микросхем заряда с такими современными технологиями, как солнечные батареи, также представляются очень перспективным направлением.
Литература
1. Чигарев М. Микросхемы управления зарядом аккумуляторов компании ON Semiconductor//Новости Электроники, № 3, 2010.
2. Никитин А. Интегральные схемы управления зарядом аккумуляторов производства Maxim//Новости электроники, № 15, 2009.
3. Хрусталев Д.А. Аккумуляторы. — М.: Изумруд, 2003.
4. L6924U. USB compatible battery charger system with integrated power switch for Li-Ion/Li-Polymer//Материал компании STMicroelectronics. Размещение в Интернете: Ссылка
5. Camiolo Jean, Scuderi Giuseppe. Reducing the Total No-Load Power Consumption of Battery Chargers and Adapter Applications Polymer//Материал компании STMicroelectronics. Размещение в Интернете: Ссылка
6. Maximum power point tracker. Статья в Википедии. Страница в Интернете: http://en.wikipedia.org/wiki/Maximum_power_point_tracker
7. STEVAL-ISV012V1: lithium-ion solar battery charger//Материал компании STMicroelectronics. Размещение в Интернете: Ссылка.
Источник