Микроконтроллер для li ion аккумуляторов

Модули защиты и контроллеры заряд/разряд для Li-ion аккумуляторов

Для начала нужно определиться с терминологией.

Как таковых контроллеров разряда-заряда не существует. Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки — сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде — это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют защиту от глубокого разряда.

При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого зарядного устройства для литиевого аккумулятора.

Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:

И вот тоже они:

Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).

Контроллеры заряда-разряда

Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).

DW01-Plus

Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.

Читайте также:  Можно зарядить аккумулятор сварочным инвертором автомобиля

Сама микросхема DW01 — шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.

Вывод 1 и 3 — это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 — датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.

Паразитные диоды, встроенные в полевики, позволяют осуществлять заряд аккумулятора, даже если сработала защита от глубокого разряда. И, наоборот, через них идет ток разряда, даже в случае закрытого при перезаряде транзистора FET2.

Вся схема выглядит примерно вот так:

Правая микросхема с маркировкой 8205А — это и есть полевые транзисторы, выполняющие в схеме роль ключей.

S-8241 Series

Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241.

Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.

AAT8660 Series

Решение от Advanced Analog Technology — AAT8660 Series.

Пороговые напряжения составляют 2.5 и 4.32 Вольта. Потребление в заблокированном состоянии не превышает 100 нА. Микросхема выпускается в корпусе SOT26 (3х2 мм, 6 выводов).

FS326 Series

Очередная микросхема, используемая в платах защиты одной банки литий-ионного и полимерного аккумулятора — FS326.

В зависимости от буквенного индекса напряжение включения защиты от переразряда составляет от 2.3 до 2.5 Вольт. А верхнее пороговое напряжение, соответственно, — от 4.3 до 4.35В. Подробности смотрите в даташите.

LV51140T

Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T.

Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы — вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.

R5421N Series

Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки — порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).

Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:

Обозначение Порог отключения по перезаряду, В Гистерезис порога перезаряда, мВ Порог отключения по переразряду, В Порог включения перегрузки по току, мВ
R5421N111C 4.250±0.025 200 2.50±0.013 200±30
R5421N112C 4.350±0.025
R5421N151F 4.250±0.025
R5421N152F 4.350±0.025

SA57608

Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608.

Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:

Обозначение Порог отключения по перезаряду, В Гистерезис порога перезаряда, мВ Порог отключения по переразряду, В Порог включения перегрузки по току, мВ
SA57608Y 4.350±0.050 180 2.30±0.070 150±30
SA57608B 4.280±0.025 180 2.30±0.058 75±30
SA57608C 4.295±0.025 150 2.30±0.058 200±30
SA57608D 4.350±0.050 180 2.30±0.070 200±30
SA57608E 4.275±0.025 200 2.30±0.058 100±30
SA57608G 4.280±0.025 200 2.30±0.058 100±30

SA57608 потребляет достаточно большой ток в спящем режиме — порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).

LC05111CMT

Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor — контроллер заряда-разряда на микросхеме LC05111CMT.

Решение интересно тем, что ключевые MOSFET’ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.

Переходное сопротивление встроенных транзисторов составляет

11 миллиом (0.011 Ом). Максимальный ток заряда/разряда — 10А. Максимальное напряжение между выводами S1 и S2 — 24 Вольта (это важно при объединении аккумуляторов в батареи).

Микросхема выпускается в корпусе WDFN6 2.6×4.0, 0.65P, Dual Flag.

Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.

Контроллеры заряда и схемы защиты — в чем разница?

Важно понимать, что модуль защиты и контроллеры заряда — это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.

Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV — постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество «заливаемой» в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.

По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.

Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу — при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.

Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (

4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.

Источник

Микроконтроллер для li ion аккумуляторов

Отличительные особенности:

  • Завершенная разработка зарядного устройства
  • Модульный исходный Си-код и высокая компактность откомпилированного кода
  • Низкая стоимость
  • Поддержка всех популярных типов аккумуляторов
  • Алгоритм быстрой зарядки
  • Высокая точность измерения с помощью 10-разрядного АЦП
  • Опциональный последовательный интерфейс
  • Простое измерение параметров зарядки
  • ЭСППЗУ для хранения характеристик аккумулятора

Описание

В данных рекомендациях описывается реализация зарядного устройства, которое учитывает последние достижения в области технологий заряда аккумуляторов и доступно в виде опорной разработки. Зарядное устройство может заряжать все популярные типы аккумуляторов, не требуя при этом каких-либо аппаратных изменений. Это позволяет на основе одной и той же аппаратной платформе реализовать различные типы зарядных устройств. Для этого необходимо всего лишь перепрограммировать микроконтроллер программой с нужным алгоритмом зарядки во внутрисистемно-программируемую флэш-память. Этим обеспечиваются минимальные сроки вывода нескольких готовых изделий на рынок, и исключается необходимость выпуска нескольких исполнений аппаратной части. В состав рекомендаций входят библиотеки для заряда аккумуляторов SLA, NiCd, NiMH и Li-Ion.


Рисунок 1 – Внешний вид платы опорной разработки зарядного устройства

В состав опорной разработки зарядного устройства входят два зарядных устройства, выполненных на разных микроконтроллерах: AT90S4433 и недорогом 8-выводном ATtiny15. Однако зарядное устройство может быть реализовано на любом AVR-микроконтроллере, у которого есть АЦП, ШИМ-выход и достаточный для хранения необходимого алгоритма зарядки размер памяти программ.

Введение

Все больше и больше электронного оборудования становится портативным, что нацеливает на создание более емких, компактных и легких аккумуляторов. Непрерывное улучшение аккумуляторных технологий отражается на появлении новых интеллектуальных алгоритмов зарядки, которые гарантируют быстроту и безопасность заряда. Высокая точность контроля над процессом зарядки требуется для минимизации времени зарядки и максимально полного использования емкости аккумулятора, при этом, исключая возможность его повреждения.

AVR-микроконтроллер в настоящее время является одним из самых эффективных 8-разрядных RISC-микроконтроллеров, который содержит флэш-память, ЭСППЗУ и 10-разрядный АЦП в одном кристалле. Флэш-память программ исключает необходимость зашивать в микроконтроллер несколько программных версий. Ее программирование может выполняться на стадии производства перед отправкой готового изделия. После установки микроконтроллера на плату программирование выполняется с помощью скоростного внутрисистемного программирования (ISP), обеспечивающего обновление памяти программ за минуту.

Память данных на ЭСППЗУ может использоваться для хранения калибровочных данных и характеристик батареи, а также для хранения хронологии зарядки, что позволяет оптимизировать использование емкости аккумулятора. Встроенный 10-разрядный АЦП обеспечивает превосходную разрешающую способность по управлению батарейным источником по сравнению с другими микроконтроллерными решениями. Высокая разрешающая способность позволяет продолжать зарядку максимально близко к емкости аккумулятора. Улучшенная разрешающая способность исключает необходимость применения внешних операционных усилителей для построения оконного компаратора. В результате уменьшается размер платы и снижается системная стоимость.

AVR – единственный 8-разрядный микроконтроллер, набор команд которого оптимизирован под языки высокого уровня, например, Си. Опорная разработка на основе AT90S4433 написана на Си и демонстрирует превосходную простоту разработки программы на языках высокого уровня. Си-код делает данную опорную разработку легко адаптируемой и модифицируемой под текущие и будущие типы аккумуляторов. Опорная разработка на основе ATtiny15 написана на Ассемблере для достижения максимальной плотности кода.

Принцип действия

Заряд аккумулятора возможен за счет обратимой химической реакции, которая восстанавливает энергию в химической системе. В зависимости от используемого химического вещества аккумулятор обладает специфическими характеристиками. При разработке зарядного устройства необходимо в деталях знать данные характеристики, чтобы избежать повреждения аккумулятора при чрезмерном заряде.

8-разрядный микроконтроллер AVR

Опорная разработка состоит из двух раздельных зарядных устройств. В одной используется AVR-микроконтроллер AT90S4433, а в другой используется AVR-микроконтроллер ATtiny15. Разработка на основе AT90S4433 демонстрирует, как реализовать зарядное устройство на Си. Разработка на основе ATtiny15 является самой высокоинтегрированным и недорогим зарядным устройством среди доступных в настоящее время. AT90S4433 может использоваться совместно с ПК для передачи через УАПП и регистрации измеренных значений температуры и напряжения. В таблице 1 представлены отличия в разработках.

Источник

Оцените статью