- Digitrode
- цифровая электроника вычислительная техника встраиваемые системы
- Влияние температуры на выработку электроэнергии солнечными панелями
- Максимальная температура солнечной панели
- Проблема перегрева солнечных панелей
- Причины перегрева, и что такое «температурный коэффициент мощности»
- Способы уменьшить нагрев солнечных панелей
- Как правильно выбрать солнечные батареи
- Как определить, какое напряжение у модулей?
- Температурная коррекция напряжения
- На что обращать внимание при выборе солнечных панелей для вашей солнечной электростанции?
- Цена против качества
- Толеранс
- Температурный коэффициент
- Эффективность преобразования солнечного света
- Срок службы и гарантии
- Размеры и мощность
- Типы солнечных элементов: монокристаллические, поликристаллические, аморфные и другие.
Digitrode
цифровая электроника вычислительная техника встраиваемые системы
Влияние температуры на выработку электроэнергии солнечными панелями
Фотоэлектрические солнечные панели преобразуют солнечный свет в электричество, поэтому вы можете думать, что чем больше солнечного света, тем лучше. Это не всегда так, потому что солнечный свет состоит не только из света, который вы видите, но и из невидимого инфракрасного излучения, которое переносит тепло. Ваша солнечная панель будет отлично работать, если она получит много света, но по мере ее нагревания ее эффективность ухудшается.
Фотоэлектрические солнечные панели представляют собой сборки отдельных ячеек из полупроводникового материала. Напряжение, выделяемое солнечным элементом, в основном определяется выбором полупроводника и элементами полупроводниковых слоев. Кремниевые солнечные элементы (самый распространенный выбор) выделяют около половины вольта из каждой ячейки. Ток, генерируемый солнечным элементом, зависит от количества солнечного света, попадающего в него. Чем больше солнечного света попадает на него, тем больше он будет генерировать энергию, вплоть до электротехнических пределов ячейки. Электрическая мощность является произведением тока, умноженного на напряжение. Небольшая панель солнечных батарей может иметь 36 ячеек, соединенных вместе, чтобы получить около 18 вольт при токе в 2 ампера. Эта солнечная панель будет рассчитана на 18 вольт х 2 ампер = 36 Вт максимальной мощности. Если на этот массив будет падать свет в течение часа, он будет генерировать 36 ватт-часов энергии.
Производители солнечных батарей тестируют свою продукцию при стандартных условиях 25 градусов по Цельсию (77 градусов по Фаренгейту) с инсоляцией 1000 Вт на квадратный метр. Инсоляция – это показатель того, сколько солнечной энергии попадает на каждый квадратный метр, перпендикулярный направлению солнечного света. Инсоляция может быть выше 1000 Вт на квадратный метр около полудня в очень ясные дни, и это заставит вашу солнечную панель генерировать больше тока, что означает большую мощность. К сожалению, другая история наблюдается с температурой. По мере того, как температуры солнечных элементов поднимаются выше 25 градусов Цельсия, ток немного возрастает, но напряжение уменьшается быстрее. Чистым эффектом является снижение выходной мощности с повышением температуры. Стандартные кремниевые солнечные панели имеют температурный коэффициент от -0,4 до -0,5 процента. Это означает, что для каждого градуса Цельсия выше 25 выход мощности из массива снизится на этот процент. При 45 градусах Цельсия (113 градусов по Фаренгейту), 40-ваттная солнечная панель с температурным коэффициентом -0,4 произвела бы менее 37 Вт.
Производительность солнечной панели рассчитана на 25 градусов Цельсия, и она уменьшается по мере повышения температуры. К счастью, она снова увеличивается, когда температура падает. Если вы находитесь в умеренном в плане климата регионе, производительность, которую вы теряете летом, будет возвращена в прохладные, чистые зимние дни. Вы можете реализовать более активный подход к охлаждению, применив испарительное охлаждение, то есть используя испарение воды, чтобы охлаждать ваши панели таким же образом, как пот охлаждает вашу кожу в жаркий день.
Альтернативой традиционным кремниевым солнечным панелям является тонкопленочные панели. Они изготовлены из разных полупроводниковых материалов, и их температурный коэффициент составляет примерно половину от температурного коэффициента кремния. Тонкопленочные панели не имеют такой высокой эффективности, как фотоэлектрические элементы из кристаллического кремния, но их низкая чувствительность к более высоким температурам делает их привлекательным вариантом для очень жарких мест. Тонкопленочные панели используются точно так же, как и их кристаллические аналоги, но они, как правило, на пару процентов менее эффективны. Их температурный коэффициент колеблется от -0,2 до -0,3%. Существуют и другие кристаллические материалы, которые характеризуются более высокой эффективностью, чем кремний, а также имеют положительный температурный коэффициент. Это означает, что их эффективность растет по мере повышения температуры. Они также очень дороги, что ограничивает их использование в некоторых специализированных приложениях.
Источник
Максимальная температура солнечной панели
Наиболее распространены в продаже два вида солнечных модулей: poly и mono-кристаллические. Они отличаются друг от друга технологией изготовления, то есть, какой кремний был применен. У моно батарей КПД 15-17%, что в среднем на 3% выше чем у вторых. Но, естественно, и цена возрастает. Выбор остается за Вами, а сейчас обратим больше внимания на технические характеристики.
Для примера возьмем солнечную панель серийного производства Solar Module c-Si M 60 255 Вт ведущего немецкого производителя BOSCH.
Начнем с параметров, которые в дальнейшем повлияют на выбор сопутствующего оборудования:
Это не значит, что панель будет выдавать постоянно 255 Вт мощности. 255 Вт её мощность при нормальных условиях, которые описаны выше.
Напряжение на выходах панели при работе без подключения нагрузки.
В случае пробоя проводника на землю или же замыкания выводов панели без нагрузки возникнет ток такой величины.
Номинальные параметры имеют место при работе под нагрузкой, где mpp расшифровуется как «maximum power point» — «точка максимальной мощности».
При повышении температуры выше +25°С, каждый градус ток к.з. будет возрастать на 0,031%.
При понижении температуры ниже +25°С, каждый градус напряжение холостого хода будет возрастать на 0,31%.
Изменение выходной мощности в зависимости от температуры панели.
При выборе солнечной панели необходимо обратить внимание на максимально возможные значения тока и напряжения. Они зависят от солнечной инсоляции и температуры температуры самой батареи. Как говорилось ранее, все параметры приведены для солнечной активности 1000 Вт/м 2 . Возможно, в Вашем регионе излучение может достигать больших значений, тогда необходимо учесть пропорциональный коэффициент kins.
Температурный коэффициент на ток дает небольшое влияние. Максимально допустимая температура панели +85°С, а параметр тока к.з. в паспорте приведен для +25°С, тогда
То есть, максимально возможный ток к.з. равен:
Температурный коэффициент на напряжение оказывает огромное влияние и не учитывать этот фактор просто недопустимо. Минимально возможная температура эксплуатации солнечной панели -40°С.
Тогда, максимальное напряжение на выводах:
Данный фотомодуль изготовлен на максимальное рабочее напряжение — 600 В DC, в то время как большинство подобных изделий рассчитаны на 1000 В DC.
Все остальные параметры солнечного модуля не имеют особой важности при выборе сопутствующего оборудования и носят лишь конструктивный и эксплуатационный характер:
Источник
Проблема перегрева солнечных панелей
Чем сильнее светит солнце, тем больше электричества дают солнечные батареи. Звучит убедительно, но в действительности это не так. В жару получать максимум генерации мешает перегрев фотоэлектрических панелей.
Нормальной для работы PV модулей является температура 25°C. Когда столбик термометра переваливает за эту отметку, эффективность фотопанелей снижается. Уменьшение продуктивности зависит от температуры окружающей среды, типа и размещения модулей. В среднем оно составляет 10%. Почему перегрев негативно сказывается на выходной мощности электрогенерирующего устройства? И можно ли как-то с ним бороться?
Крышная солнечная электростанция мощностью 31 кВт, Измаил (Одесская обл.)
Причины перегрева, и что такое «температурный коэффициент мощности»
Солнечная панель состоит из фотоэлементов, в которых протекают электрические процессы. По мере нагревания в ячейках возрастает поток электронов, что приводит к падению напряжения и росту силы тока. Как следствие, снижается мощность отдельно взятых фотоэлементов и модуля в целом. Узнать, сколько именно ватт теряется в процессе перегрева, можно из спецификаций. Данная характеристика значится там, как «температурный коэффициент мощности».
Объем энергопотерь модуля от перегрева определяется в ходе тестовых испытаний на производстве. У разных моделей кремниевых кристаллических батарей он в среднем в пределах 0,45–0,5%/°C. Более стойки к высоким температурам тонкопленочные (аморфные) солнечные панели. Их коэффициент – около 0,2%/°C. Это означает, что с каждым повышением на градус от нормы выход мощности снижается на 0,2%. Например, в 40-градусную жару производительность такой фотопанели уменьшится на 3%. Соответственно у модели с тепловым коэффициентом 0,5%/°C снижение выработки при тех же условиях составит 7,5%.
Температура воздуха не единственный фактор, способствующий нагреву панелей. Значительную роль играет также тепловая эмиссия кровельной поверхности. Так, темная крыша нагревается сильнее светлой – до 70–80°C. И это не в самый жаркий день! Температура расположенных на ней фотопанелей может достигать 60–70°C. Теплопроводность зависит от кровельного материала. Быстро нагревается шифер, металлочерепица, мягкая кровля с битумной составляющей.
Способы уменьшить нагрев солнечных панелей
Ученые пока лишь ищут пути решения проблемы с перегревом батарей. Считается, что повышение стойкости к высоким температурам позволит не только увеличить генерацию электричества летом, но и продлить срок службы модулей. Заметных успехов в этом направлении достигла научная группа профессора Шаньхуэ Фаня. В стенах Стэнфордского университета в 2014 году была создана фотопанель с дополнительным тончайшим рельефным слоем кварцевого стекла. Такая поверхность пропускает видимый свет для генерации электричества, и отражает греющие инфракрасные лучи. В итоге происходит пассивное охлаждение.
Еще одним вариантом борьбы с перегревом стала WindRail. Гибридную ветросолнечную электрогенерирующую установку, в которой ветряки выполняют функцию вентиляторов для солнечных панелей, разработал шведский инженер Свен Колер. Пилотный проект появился год назад, а продвигать его взялась компания Anerdgy. Первую систему WindRail установили на крыше 12-этажного жилого дома в Берлине. Благодаря компактности, синергичности и продуманности конструкции такая установка имеет все шансы стать востребованной в городских условиях.
WindRail — гибридный электрогенератор с самоохлаждающимися солнечными модулями
Впрочем, на проверку жизнеспособности и массовое внедрение опытных образцов уходят годы. А что делать владельцам фотоэлектростанций сейчас для снижения нагрева панелей? При выборе солнечных батарей нужно обращать внимание на заявленный производителем температурный коэффициент мощности: чем он меньше, тем лучше будет работать модель в жаркий день.
Второй важный нюанс – размещение. Благодаря хорошей естественной обдуваемости, солнечные панели на трекерах или наземных фермах нагреваются меньше, чем крышные системы. Если же решено устанавливать модули на доме, следует побеспокоиться о вентиляционной системе кровли. Кроме того, между фотопанелями и поверхностью крыши должен быть существенный зазор для свободной циркуляции воздуха.
Итак, температурный коэффициент мощности – один из важнейших параметров в спецификациях батарей. Он показывает, насколько продуктивны панели в жару. Для снижения потерь выработки в результате перегрева фотомодули нужно устанавливать на расстоянии от поверхности крыши. Дополнительно можно улучшить вентиляцию подкровельного пространства.
Источник
Как правильно выбрать солнечные батареи
Мы не так часто в нашей жизни покупаем солнечные батареи или устанавливаем солнечную электростанцию у себя на крыше. И правильно подобрать такое дорогостоящее оборудование одновременно ответственная и сложная задача для покупателя. Давайте попробуем разобраться в некоторых нюансах и возможных подводных камнях перед желанной покупкой.
В первую очередь, необходимо обратить внимание на технические характеристики солнечного фотомодуля. Основные из них перечислены ниже. Также, необходимо проверить качество изготовления и отсутствие визуальных дефектов на фотоэлементах, защитном стекле, ну и конечно, раме солнечного модуля.
Как определить, какое напряжение у модулей?
В последние годы на рынке появились солнечные панели с нестандартным напряжением, которые предназначены для работы в последовательных высоковольтных цепочках. С легкой руки непрофессиональных продавцов, появилась путаница с указанием номинального напряжения солнечных модулей. Мы возьмём на себя смелость и постараемся дать несколько советов, как определить, какое напряжение у солнечной батареи.
Различают несколько напряжений, которые указываются в параметрах солнечных панелей.
- Напряжение в точке максимальной мощности (ТММ). Это напряжение при работе модуля с максимальной эффективностью, т.е. когда он выдает свою пиковую мощность при стандартных тестовых условиях (STC). Это напряжение указывается в спецификациях модулей. Нужно учитывать, что измерить напряжение ТММ не так просто. Более того, очень часто нагрузка или аккумуляторные батареи заставляют работать солнечный модуль при напряжении, отличном от напряжения ТММ (обычно на несколько вольт ниже). Номинальная мощность равна произведению напряжения в точке максимальной мощности на ток в ТММ.
- Напряжение холостого хода. Напряжение холостого хода измеряется на клеммах солнечной панели без нагрузки, т.е. когда ток равен нулю. Это напряжение указывается в спецификациях на солнечных модуль. Напряжение холостого хода важно для определения максимально возможного напряжения, которое может выдавать модуль и солнечная батарея, собранная из нескольких модулей. Используя коэффициент температурной коррекции напряжения можно вычислить максимально возможное напряжение солнечного модуля при низкой температуре. Это напряжение не должно превышать максимально допустимого напряжения контроллера или инвертора.
- Номинальное напряжение. Это напряжение используется для классификации и различения модулей. Этот параметр пришел к нам со времен, когда солнечные панели использовались только для заряда аккумуляторных батарей. Это напряжение часто не указывается в спецификациях солнечной панели. Параметр номинального напряжения был введен для облегчения подбора солнечных панелей к аккумуляторам. Например, 12 В аккумуляторы нужно заряжать солнечной панелью с номинальным напряжением 12 В, а батарею 24 В — солнечной панелью с номинальным напряжением 24 В.
Здесь ситуация аналогичная напряжениям, указываемым для аккумуляторов. Как известно, для заряда аккумулятора номинальным напряжением 12 В нужно зарядное устройство с напряжением примерно до 15 В. Поэтому 12-ти вольтовая солнечная панель должна выдавать такое напряжение при различной температуре.
Поэтому, даже несмотря на то, что напряжение в ТММ солнечной панели равно 17 В, она будет заряжать аккумулятор при 14 В, а инвертор питать при 10-15 В, но все эти элементы будут иметь номинальное напряжение 12 В. Таким образом, для потребителя облегчается задача подбора оборудования, совместимого друг с другом.
Такой подход прекрасно работал до появления MPPT контроллеров и сетевых фотоэлектрических инверторов. Технология MPPT (поиска точки максимальной мощности солнечной батареи, англ. maximum power point tracking) позволяет «отвязать» напряжение солнечной батареи от номинальных напряжений инвертора и аккумулятора.
Сетевые инверторы и MPPT контроллеры позволили производителям солнечных панелей ориентироваться на размер панелей и их мощность, а не на напряжение. Так появились модули, напряжение которых совершенно не связано с напряжениями на аккумуляторах.
Напряжение солнечной батареи определяется количеством соединенных последовательно солнечных фотоэлементов. Каждый элемент имеет рабочее напряжение чуть менее полвольта. В настоящее время есть модули с количеством элементов 36 шт., 48 шт., 54 шт., 60 шт., 72 шт., 96 шт. и 120 шт. Самые распространённые панели с количеством фотоэлементов 36 шт., 60 шт. или 72 шт. В таблице ниже приведены основные напряжения этих солнечных панелей.
При покупке модулей для автономной системы с аккумуляторами обращайте внимание на напряжение модуля. В последнее время массово производятся модули высокой мощности с нестандартным номинальным напряжением 20 В. Такие модули обычно используются совместно с сетевыми фотоэлектрическими инверторами или с MPPT контроллерами заряда. Если вы хотите удешевить систему за счет менее дорогого ШИМ контроллера, выбирайте модули с номинальным напряжением 12 В или 24 В.
Температурная коррекция напряжения
Напряжение при возможных низких рабочих температурах модуля важно знать, для того, чтобы правильно подобрать солнечный контроллер или инвертор. Как известно, напряжение солнечной батареи растет при понижении температуры. Температурный коэффициент обычно указывается в спецификациях солнечного модуля.
На что обращать внимание при выборе солнечных панелей для вашей солнечной электростанции?
Цена против качества
Кроме того, что не все производители и солнечные модули одинаковы, есть еще ряд параметров и факторов, на которые следует обратить внимание при принятии решения о покупке и при выборе поставщика. Только лишь цена на модули не должна быть определяющим фактором.
Проблемы и ухудшение параметров солнечных модулей может быть вызвано следующими факторами:
- Качество солнечного элемента — его эффективность может быть разной. Это зависит от множества его параметров — шунтового и последовательного сопротивлений, шумовых токов, обратного сопротивления и т.д. Многое зависит от качества производства солнечного элемента и качества применяемых при его производстве материалов и оборудования. Известны проблемы практически на каждом этапе производства элемента — начиная от качества применённого кремния, до качества применяемых контактных паст и припоя. Мы в данной статье не будем рассматривать эти проблемы, это предмет для отдельной большой статьи.
- Качество пайки солнечных элементов. При некачественной пайке возможен локальный перегрев контакта и его прогорание.
- Качество EVA пленки, которая расположена между элементами и стеклом. Старение кристаллических солнечных модулей в основном связано со старением и помутнением этой пленки. Некачественная пленка может начать мутнеть и разрушаться уже через несколько лет. Хорошая пленка будет служить 30 и более лет, при этом ее помутнение (и, следовательно, потеря мощности модулем) не будет превышать 25-30%
- Качество герметизации модуля и качество задней защитной пленки. Задняя пленка защищает модуль от попадания влаги. В любом модуле происходит диффузия влаги через пленку. Если качество пленки хорошее, то вся влага, которая попадает внутрь модуля, при его нагревании на солнце, выводится наружу. Если же пленка некачественная, то влаги попадает больше, чем может выйти при нагреве, остаточная влага накапливается внутри модуля и разрушает контакты и контактную сетку элементов. Это приводит к преждевременному выходу модуля из строя.
- Качество алюминиевой рамы. Здесь все понятно: некачественное анодирование может приводить к окислению рамки и ее коррозии. К счастью, этот дефект больше визуальный и вряд ли приводит к преждевременному выходу модуля из строя. Хотя, в некоторых случаях (например, при установке модулей на мачтах, где возможны сильные ветровые нагрузки или там, где среда агрессивная) ускоренная коррозия металла может приводить к его разрушению под нагрузками.
- В последнее время появились солнечные модули с двойным стеклом, т.е. вместо задней защитной пленки применено стекло. Такие модули имеют ряд преимуществ.
Крыша веранды изготовлена из солнечных панелей с двойным стеклом
Толеранс
Под толерансом подразумевается отклонение реальной мощности модуля от паспортной. Толеранс может быть, как положительным, так и отрицательным. Например, модуль c паспортной мощностью 280 Вт может иметь мощность 275 Вт — это будет означать, что данный модуль имеет отрицательный толеранс. Положительный толеранс означает, что солнечная панель не только гарантированно будет иметь при стандартных тестовых условиях выходную мощность 290Вт, но и даже больше.
Температурный коэффициент
Температурный коэффициент отражает, какое влияние на выходные ток и напряжение модуля будет иметь повышение или понижение температуры модуля. Как известно, напряжение и мощность модуля при повышении температуры уменьшаются, а ток повышается. Чем меньше температурный коэффициент изменения мощности, тем лучше.
Эффективность преобразования солнечного света
C этим понятно — чем больше КПД, тем меньшая площадь модулей потребуется для генерации одинаковой мощности и энергии.
Срок службы и гарантии
Заявленный срок службы солнечной панели важен по нескольким причинам. Он может отражать уверенность производителя в качестве произведенной продукции. Солидные производители имеют гарантию 25 лет на 80-90% мощности модуля, а также 5 и более лет на механические повреждения.
Однако, нужно учитывать, что гарантия действует до тех пор, пока существует производитель или импортер. Здесь уже «как карта ляжет» — в последние годы из солнечного бизнеса ушли компании, которые, казалось, будут в нем еще очень долго. Но тем не менее, общее правило остается — покупайте у продавцов и производителей, которые давно на рынке и устойчиво «плывут» в бурном потоке рынка. Так как мало кто покупает модули напрямую от производителя, важно правильно выбрать продавца или установщика, которые обеспечат вам правильный выбор и режимы работы вашей системы солнечного электроснабжения.
Размеры и мощность
Стоимость модуля зависит от его мощности прямо пропорционально. Однако, чем больше единичная мощность модуля, тем меньше будет его стоимость за ватт. Поэтому, если вам нужна определенная мощность, то лучше ее набрать большими модулями, чем маленькими — это будет и дешевле, и надежнее, т.к. у вас будет меньше соединений. Также, стоимость за ватт модулей со стандартным напряжением 12/24 В обычно выше, чем с нестандартным количеством элементов в модуле 48 или 54. Для последних при заряде аккумуляторов нужен более дорогой MPPT контроллер.
Тип солнечных элементов, примененных в модуле, также определяет его размер. Поэтому сначала посчитайте, какая мощность вам нужна для снабжения энергией вашей нагрузки, потом посмотрите, хватит ли вам места для размещения такого количества модулей. Может потребоваться выбрать более дорогие, но более эффективные модули, для того, чтобы обеспечить все ваши потребности в энергии. Не забывайте, кстати, что перед проектированием системы солнечного электроснабжения нужно принять все возможные меры по энергосбережению.
Пиковая мощность всех модулей измерена при стандартных тестовых условиях:
Масса воздуха AM=1.5, радиация E=1000 Вт/м 2 и температура фотоэлектрического элемента Tc=25°C. Такие условия при реальной работе модулей не существуют — модули нагреваются обычно до 40-60 градусов, освещенность почти всегда ниже 1000 Вт/м 2 (исключение составляют морозные ясные дни). Поэтому многие производители также дают характеристики модулей при NOCT (normal operation conditions) — обычно для температуры модуля 45-47 °C и освещенности 800 Вт/м 2 , при этом выработка модулей примерно на 25-30% ниже пиковой. В морозный ясный день выработка модулей может доходить до 125% от пиковой.
Типы солнечных элементов: монокристаллические, поликристаллические, аморфные и другие.
Основные типы солнечных элементов, которые сейчас массово продаются на рынке, следующие:
- Монокристаллические. Имеют наибольшую эффективность и удовлетворительные температурные коэффициенты.
- Поликристаллические. В настоящее время наиболее популярные, т.к. имеют меньшую стоимость за ватт при примерно таких же характеристиках, как монокристаллические. Последние улучшения в технологии поликристаллических модулей брендовых производителей привели к тому, что их параметры могут быть даже лучше, чем у монокристаллических модулей noname производителей/сборщиков панелей.
- Аморфные (тонкопленочные). Используют наименьшее количество кремния. Имеют примерно в 2 раза меньший КПД по сравнению с кристаллическими модулями. К преимуществам можно отнести низкий температурных коэффициент (т.е. при нагревании мощность таких модулей падает незначительно) и большую чувствительность при низких освещенностях.
- CIGs — тонкопленочные модули из кадмий-индий-галлий теллурида. Многообещающая технология, но массового распространения пока не получила. Делают такие модули всего несколько производителей, и цена на них за ватт обычно выше, чем на массово выпускаемые модули из кристаллического кремния.
В последние годы появились солнечные модули, изготовленные с применение новых технологий: PERC, гетероструктурные и т.п. Они имеют больший КПД и улучшенную эффективность. Пока их стоимость превышает стоимость стандартных кристаллических модулей с токосъемными шинами, но технология совершенствуется и рынок постепенно переходит на новые типы модулей, цена которых снижается.
Какие же модули, из перечисленных выше, работают лучше? В последнее время появилось много мифов и необоснованных заявлений насчет того, что какой-то из этих типов модулей работает лучше, чем другие. Некоторые уверяют, что поликристаллические элементы лучше работают при низкой освещенности и в пасмурную погоду. Другие утверждают то же самое, но для монокристаллических элементов. Были даже версии, что поликристаллические элементы лучше преобразуют рассеянный свет, потому что кристаллы в них «повернуты в разные стороны».
Анализ результатов тестирования сотен модулей показывает, что модуль хорош не тот, который моно или поли, а тот, который сделан качественно. Результаты тестирования модулей по PTC (которые ближе к реальным условиям эксплуатации модулей) показывают, что некоторые монокристаллические лучше, чем некоторые поликристаллические, а некоторые поликристаллические лучше, чем некоторые монокристаллические. Этот факт также подтверждают многочисленные результаты сравнений модулей конечными пользователями — можно найти как «доказательства» преимуществ моно перед поли, так и преимуществ поли перед моно. Однако большинство монокристаллических модулей немного лучше работают при нагреве — это подтверждает анализ большого количества данных по PTC мощности солнечных модулей различных производителей.
Что является фактами, так это следующее:
- Монокристаллические модули обычно имеют больший КПД при STC, т.е. можно получить больше мощности с единицы площади солнечной батареи при ярком солнце.
- Монокристаллические модули имеют меньшую деградацию со временем.
- Монокристаллические модули дороже за ватт.
- На эффективность стандартных модулей в общем случае влияет количество токосъемных шин. Чем их больше, тем лучше работают солнечные элементы. Солнечные элементы с 4 шинами (4BB) постепенно вытеснены элементами с 5 шинами (5BB). Эффективность их выше, чем у элементов с 3 или 4 шинами, но сравнивать при этом нужно элементы производителей одинакового уровня. Хороший (брендовый, Tier1) производитель делает модули с 4BB элементами лучше, чем noname или Tier3 c 5BB.
- Солнечные элементы, изготовленные по новой технологии (PERC, гетероструктурные и др.) имеют КПД примерно на 10-15% выше. Т.е. в размере стандартного 260-280Вт модуля можно получить до 320Вт.
Так что еще раз повторим — если хотите получить солнечные панели с прогнозируемыми параметрами — покупайте брендовые, с указанием реального производителя. Этот производитель должен быть в списке протестированных независимыми лабораториями или рекомендован независимыми агентствами.
Источник