- Литий-ионные (Li-ION) аккумуляторы: виды, типоразмеры, сфера применения
- Все (+) и (-) литий-ионных аккумуляторов
- Производство литий-ионных аккумуляторов
- Как работают и что находится внутри литий-ионных аккумуляторов
- Виды, типоразмеры литий-ионных аккумуляторов
- Применение аккумуляторов Li-ION
- Использование литий-ионных АКБ
- Как уберечь Li-ионный аккумулятор, поставив его на хранение?
- Переработка литий-ионных элементов питания
- Литий-ионный аккумулятор (Li-ion)
- Принцип работы литий-ионного аккумулятора
- Строение литий-ионного аккумулятора
- Процесс заряда и разряда литий-ионного аккумулятора
- Слой разделителя в литий-ионном аккумуляторе
- Из чего делают литий-ионный аккумулятор
- Литий-ионные аккумуляторы в автомобиле Tesla
- Защитный SEI-слой
- Заключение
Литий-ионные (Li-ION) аккумуляторы: виды, типоразмеры, сфера применения
На протяжении не одного десятка лет устройствами, которые обеспечивали работу разного рода механизмов и автономных объектов, считались кислотные аккумуляторы.
Несмотря на многие превосходства такие батареи имели и недочеты: в аппаратах с большим потреблением электроэнергии их нельзя было использовать. Также не допускалось использование в закрытых, непроветриваемых помещениях.
Но время не стоит на месте, и на смену старого всегда приходит что-то новое. Так мало-помалу возникли литий-ионные (Li-Ion) аккумуляторы. Они стали качественнее своих предшественников, а значит, и надежнее.
Имея некоторые дефекты, им присущи минимум негативных качеств. Подробности ниже.
Все (+) и (-) литий-ионных аккумуляторов
В 70-ом году прошлого века о Li-ion АКБ стали известны. Чтобы повысить уровень электроэнергии, в такую батарею устанавливался анод лития.
Благодаря ему эксплуатация изделия увеличивалась, но возникала другая проблема: при перегревании катода могло произойти воспламенение аккумулятора.
Спустя определенный период времени этот дефект был заменен ионами металла, существенно снизив опасность возгорания батареи.
Литий-ионные аккумуляторы и ныне пользуются немалой популярностью у покупателей. Они испытаны временем, число зарядов/разрядов по циклу у них многочисленно.
Обладая слабым «эффектом памяти» и легким весом, аккумуляторы li-Ion обретают свою нужность во многих портативных и автономных устройствах. К примеру, li-ion-ные батарейки для техники быту, источники для тяги электроэнергии с высокой эффективностью.
Присутствуют у литий-ионных батареек и свои изъяны, которые в принципе могут легко компенсироваться умением накапливать энергию, благодаря высокой плотности.
Перечислим некоторые из них:
- относительно дорогие;
- продолжительные разряды губительны для них;
- работают хуже в жару;
- при температурах со знаком «минус»могут сойти на нет («погибнуть»);
- при нарушении герметичности становятся взрывоопасными;
- теряют емкость как при перегреве, так и при использовании на морозе.
Производство литий-ионных аккумуляторов
Принцип изготовления Li-Ion АКБ происходит поэтапно:
- сначала изготавливаются электроды;
- затем они объединяются в батарею;
- далее устанавливается плата и защита;
- потом ставится батарея в корпус;
- заливается электролит;
- тестируется АКБ и отправляется на зарядку.
Для того чтобы изделие стало невероятно высокого качества и не подводило впоследствии своей работы, необходимо строго соблюдать все этапы технологии производства, а также не забывать о мерах предосторожности в процессе работы.
В качестве электрода (-) в li-ION-ном аккумуляторе выступает фольга, поверхность которой покрыта веществом из Li.
В зависимости от того, для каких целей предназначена Li-ионная аккумуляторная батарея, в нее будут входить следующие Li-Ion соединения:
В «пальчиковых(АА)» и «мизинчиковых(ААА)» АКБ катод (-) находится в форме рулона и отделен от анода (+) с помощью сепаратора.
При большой площади отрицательного электрода, покрытого тоненькой пленкой, энергоемкость батареи становится значительно выше.
Как работают и что находится внутри литий-ионных аккумуляторов
Рабочая деятельность аккумулятора Li-ion заключается в следующем:
- электроток подается на контакты АКБ? и катионы лития начинают двигаться в сторону электрода (+);
- когда батарея начинает разряжаться, ионы лития покидают электрод (+) и переходят в диэлектрик на глубину до пятидесяти нанометров.
Количество таких циклов у батареек данного типа может быть до трех тысяч. И в каждом из них аккумуляторная батарейка может спустить почти весь электроток, который был накоплен во время заряда.
Если батарею разрядить практически до конца? это не приведет к окислению пластинок АКБ (что определяет выгодность данного изделия — в отличие батарей с кислотным содержимым).
Интересный факт! Не все литий-ионные аккумуляторы выдерживают продолжительные по времени разрядки. К примеру, для телефонных или фотоаппаратных устройств такое действие не желательно. В них сработает схема «контроллер» и просто заблокирует заряд батареи. И только с помощью специального ЗУ ее возможно потом будет зарядить. Если же, это касается, например, устройства аппарата для лодки, то глубокий разряд на нем никак не отразится.
В отличие от «пальчиковых» АКБ более сложные элементы питания имеют в себе множество отдельных источников электрического тока с последовательным либо параллельным соединением.
Такое соединение будет зависеть от того, какой показатель электричества будет увеличен.
Виды, типоразмеры литий-ионных аккумуляторов
Литий-ионные АКБ находят широкое применение в разного рода бытовых устройствах, в электромобилях, планшетах и других видах современных гаджетов.
Также существуют промышленные Li-Ion АКБ, обладающие большой емкостью и высоким напряжением. Ниже в таблице приведем примеры более востребованных на рынке аккумуляторных батарей:
Помимо АКБ в форме цилиндра, существуют и другие формы изделий. К таковым относятся: «Крона» с U=9 Вольт и более мощные промышленные аккумуляторы с U=12 V , U=24 V , U=36 V , U=48 V.
Маркировка на корпусе аккумуляторов гласит об элементах, которые добавлены в данную батарею.
- если стоит ICR, значит, аккумулятор содержит кобальт;
- маркировка IMR означает добавление марганца в состав;
- INR — говорит о никеле с марганцем в АКБ;
- NCR — оповещает о «порции» никеля и кобальта в батарее.
Не только размер и химические добавки отличают друг от друга литий-ионные аккумуляторы, но и емкость с напряжением. Именно они помогают определить для какого электрического прибора изготовлена батарея.
Применение аккумуляторов Li-ION
Литий-ионные элементы питания незаменимы там, где возникает потребность полной отдачи электричества батареей, при ее немалом количестве циклов (заряд/разряд), не снижая емкости изделия.
В преимуществе выступает значительно небольшой вес АКБ. А значит, и применение свинцовых решеток такому устройству не потребуется.
Тщательно изучив, все (+) и (-) стороны работы литий-ионных аккумуляторов, рассмотрим область их применения:
- В стартерных батарейках. Аккумуляторы li-Ion с большой скоростью дешевеют. Все это происходит от того, что на рынке с каждым днем выпускаются более совершенные АКБ. Они-то и являются главным источником снижения в цене их предшественников. Стоимость новинок обычно высокая, ( что сильно бьет по карману любителей поездок с ветерком). Основным пробелом литий-ионных аккумуляторов является падение мощности при t˂20, в результате чего использование их в районах Крайнего Севера становится непрактичным.
- Для аппаратов тяги. Литий-ионным аккумуляторам свойственно переносить разряд глубокого действия, поэтому эксплуатация их в качестве источника тяги для электромотора в лодке будет уместным. При небольшой мощности двигателя одного заряда такой АКБ хватит не менее чем на шесть часов рыбалки (либо простого лодочного путешествия). Li-ION-ные аккумуляторы применяют для погрузочной техники, которая используется в закрытом пространстве (например, для электроштабелеров, электропогрузчиков).
- Для оборудования, используемого в быту. Многие бытовые устройства вместо традиционных батареек применяют литий-ионные. У таких АКБ U=3,6 Вольт (3,7 Вольт). Однако, встречаются и такие, которые могут с легкостью заменить даже солевую либо щелочную батарейку с U=1,5 Вольт.
А если рассмотреть модели с U=3 Вольт, например у «15270» или «CR2», то такой тип АКБ сможет заменить и две стандартные батарейки. Подобные аккумуляторы обычно используются в более мощных электроприборах, т.е там, где простая солевая батарейка их заменить не сможет (из-за быстрой разрядки).
Использование литий-ионных АКБ
Продолжительность жизни литий-ионного аккумулятора зависит от правильной эксплуатации изделия.
Есть две основные ошибки использования данного вида АКБ:
- Не рекомендуется полностью разряжать литий-ионный аккумулятор. Хотя батареи такого типа и устойчивы к полному разряду, однако не стоит увлекаться этим действием чересчур. Особенно это губительно для аккумуляторов с источником бесперебойного питания и электродвигателями с большой мощностью. Если все же такая ситуация произошла, необходимо своевременно постараться подключить литий-ионную АКБ к ЗУ. «Завести» аккумулятор возможно и после продолжительного пребывания его в состоянии большого разряда. Для этого потребуется зарядить батарею не менее двенадцати часов, а затем разрядить по новой.
- Перезарядка изделия портит его качество. При перезарядке литий-ионного аккумулятора нужно помнить, что это действие будет отражаться на свойствах изделия, причем не с положительной стороны. Если заряд батареи происходит в неотапливаемом помещении, то схема «контроллер» может не всегда сработать и обесточить батарею. Помимо этих двух ошибок, необходимо беречь литий-ионный аккумулятор от механических воздействий, разного рода ударов, в результате которых, может произойти разгерметизация корпуса изделия и произойти возгорание внутри него. Именно из-за этого такие изделия (в них чистого лития ˃ на 1 грамм) запрещено пересылать по почте.
Как уберечь Li-ионный аккумулятор, поставив его на хранение?
Перед тем как поставить на хранение литий-ионный аккумулятор, надо соблюсти некоторые последовательные правила-пункты:
- Правило 1. Не влажное и не жаркое место – лучший метод хранения АКБ.
- Правило 2. Извлеките элемент питания из электроприбора.
- Правило 3. Обязательно зарядите изделие перед тем, как поставить его на консервацию. Чтобы не произошла коррозия элементов внутри, минимальное U=2,5 V на один элемент.
Саморазряд литий-ионных АКБ невысок, поэтому за его хранение можно не переживать в течение многих лет. Однако следует помнить при этом, что емкость изделия будет потихоньку тоже снижаться.
Переработка литий-ионных элементов питания
Li-Ion батареи содержат в себе вредные для жизни вещества, поэтому дома не стоит их даже пытаться разбирать. Когда срок службы АКБ закончился, ее необходимо утилизировать.
Для этого и существуют специальные приемные пункты по сбору, просрочившихся либо негодных батарей. За такую услугу можно получить вознаграждение в денежном эквиваленте.
И это не фантазии! Любое литий-ионное изделие содержит в себе не дешевый элемент, который после переработки оживет и будет числиться на рабочем посту дальше.
Источник
Литий-ионный аккумулятор (Li-ion)
В настоящее время литий-ионный аккумулятор используется абсолютно во всей домашней и портативной электронике.
li-on аккумуляторы в гаджетах и устройствах
Можно без преувеличения сказать: без портативных источников питания, мир современной техники был бы намного беднее. Все разнообразие карманных электронных гаджетов, приборов, смартфонов, гироскутеров, электромобилей наконец, стало возможным благодаря литий-ионным аккумуляторам.
Принцип работы литий-ионного аккумулятора
Давайте рассмотрим литий-ионный аккумулятор. Как видите, он состоит из нескольких слоев с различным химическим составом.
состав литий-ионного аккумулятора
В основе работы литий-ионного аккумулятора лежит, так называемый, электрохимический потенциал. Суть его в том, что металлы стремятся «отдавать» свои электроны. Как видно на рисунке ниже, наибольшая способность к отдаче электронов – у лития, а наименьшая – у фтора. Если такой атом отдает свой электрон, то он становится положительным ионом.
Первая в истории электрическая батарейка, созданная более 200 лет назад Алессандро Вольтой, работала как раз на принципе электрохимического потенциала. Вольта взял два металла с разными электрохимическими потенциалами (цинк и серебро) и получил электрический ток. В честь его открытия такую “батарейку” назвали Вольтовым столбом.
Вольтов столб
В 1991 г. Sony выпустила первый коммерчески успешный литий-ионный аккумулятор.
В литий-ионных элементах используется металл с наибольшей способностью отдавать электроны – литий. У лития всего один электрон на внешней орбите, и он постоянно стремится его «потерять».
атом лития
Из-за этого литий считается чрезвычайно химически активным металлом. Он реагирует даже с водой и воздухом. Но активен только чистый литий, а вот его оксид, напротив, очень стабилен.
оксид лития
Это свойство лития как раз используется при создании литий-ионных аккумуляторов.
Допустим, мы каким-то образом отделили атом лития от оксида. Этот атом будет крайне нестабилен и сразу превратится в положительный ион, потеряв электрон.
положительный ион
Однако в составе оксида литий гораздо более стабилен, чем одинокий атом лития. Если мы сможем каким-то образом обеспечить движение по двум отдельным путям для электрона и для положительного иона лития, то ион самостоятельно достигнет оксида и встанет там на свое место. При этом мы получим электрический ток благодаря движению электрона.
Итак, можно получить электрический ток из оксида лития, если сначала отделить атомы лития от оксида и затем направить потерянные ими электроны по внешней цепи. Рассмотрим, как эти две задачи решаются в литий-ионных элементах.
Строение литий-ионного аккумулятора
Помимо оксида лития, элементы содержат также электролит и графит. В графите связь между слоями гораздо слабее, чем между атомами внутри слоев, поэтому графит имеет слоистую структуру.
строение литий-ионного аккумулятора
Электролит, помещенный между оксидом лития и графитом, служит барьером, пропускающим сквозь себя только ионы лития. Электроны же не могут проникать сквозь электролит и отскакивают от него, как теннисный мячик об стенку. В качестве электролита используется органическая соль лития, которая наносится на слой разделителя (о разделителе ниже в статье).
электролит пропускает ионы и не пропускает электроны
Процесс заряда и разряда литий-ионного аккумулятора
Итак, у нас есть разряженный аккумулятор
литий-ионный аккумулятор разряженный
Давайте же его зарядим. Для этого нам нужен какой-либо источник питания. Что произойдет в этот момент на самом литий-ионном аккумуляторе? Положительный полюс начнет притягивать электроны, «вытаскивая» их из оксида лития.
процесс зарядки литий-ионного аккумулятора
Поскольку электроны не могут проникать через электролит, то они движутся по внешней цепи через источник питания.
и в конце концов достигают графита
где очень удобно располагаются в слоях графита.
В этот же самый момент положительные ионы лития притягиваются отрицательным полюсом, проходя сквозь электролит и также попадают в графит, размещаясь между его слоями.
Когда все ионы лития достигнут графита и будут «захвачены» его слоями, батарея будет полностью заряжена.
Такое состояние батареи неустойчивое. Это можно представить как шар, который находится на самой верхушке холма и в любой момент может скатиться.
Вот мы и достигли первой цели: электроны и ионы лития отделены от оксида. Теперь надо как-то сделать так, чтобы электроны и ионы двигались разными путями. Как только мы подключим какую-либо нагрузку к нашему заряженному литий-ионному аккумулятору, то начнется обратный процесс. В этом случае ионы лития через электролит пожелают вернуться в свое изначальное состояние.
Поэтому они начнут двигаться обратно сквозь электролит, а электроны побегут через внешнюю цепь, то есть через нагрузку.
генерация электрического тока в литий-ионном аккумуляторе
Так как электрический ток – это не что иное, как упорядоченное движение заряженных частиц, то в цепи лампочки накаливания возникнет электрический ток, который заставит эту самую лампочку светиться.
Как только все электроны “убегут” из графита, то батарея полностью разрядится. Чтобы ее снова зарядить, достаточно поставить аккумулятор “на зарядку”.
разряженный литий-ионный аккумулятор
При этом графит сам по себе не участвует в химических реакциях – он лишь служит «складом» для ионов и электронов лития.
Слой разделителя в литий-ионном аккумуляторе
Если внутренняя температура элемента по какой-то причине начнет расти, жидкий электролит высохнет, и произойдет короткое замыкание между анодом и катодом. В результате элемент может загореться или даже взорваться.
Чтобы этого не произошло, между электродами помещается дополнительный изолирующий слой, называемый разделителем. Разделитель проницаем для ионов лития благодаря наличию микропор. Электроны он не пропускает.
разделитель в литий-ионном аккумуляторе
Из чего делают литий-ионный аккумулятор
В реальных литий-ионных аккумуляторах графит и оксид лития наносятся в виде покрытия на медную и алюминиевую фольгу. Ниже на рисунке мы видим, что на тонком листе меди у нас располагается графит, а на тонком листе алюминия – оксид лития.
Минус аккумулятора снимается с медной фольги, а плюс – с алюминиевой.
ну а между ними располагается еще разделитель, пропитанный электролитом
Для того, чтобы уменьшить объем, все эти три слоя сворачивают в “рулончик”.
цилиндрический аккумулятор строение
образуя при этом всем нам знакомую литий-ионную цилиндрическую батарейку
Литий-ионные аккумуляторы в автомобиле Tesla
Вообразите мир, в котором все машины оснащены электродвигателями, а не двигателями внутреннего сгорания. Электромоторы превосходят ДВС практически по всем техническим показателям, да к тому же намного дешевле и надежнее. У ДВС есть существенный недостаток: он выдает достаточный крутящий момент лишь в узком диапазоне скоростей. В общем, электродвигатель – однозначно лучший выбор для автомобиля. Об этом мы писали еще в статье про автомобиль Тесла.
Сравнение электромобилей и автомобилей с ДВС
Но есть одно «узкое место», из-за которого электрическая революция в автопроме постоянно откладывается – это источники питания. Долгое время громоздкие, тяжелые, недолговечные и ненадежные аккумуляторы электромобилей никак не могли составить конкуренцию полному баку бензина. Но все изменилось, когда на рынок вышел производитель электромобилей Тесла.
Именно литий-ионные аккумуляторы использует компания Тесла для своих электрокаров.
Стандартный элемент выдает напряжение 3,7 – 4,2 В. Множество таких элементов, соединенных последовательно и параллельно, образуют модуль.
батарейный модуль Тесла
Литий-ионные элементы при работе выделяют много тепла. При этом высокая температура снижает срок службы и эффективность самих элементов. Для контроля температуры, а также их уровня заряда, защиты от перезаряда и общего состояния элементов питания, служит специальная система управления батареями (Battery management system, сокращенно BMS). В батареях Tesla используется спиртовая система охлаждения. BMS регулирует скорость движения спирта в системе, поддерживая оптимальную температуру батарей.
радиатор для аккумуляторов Тесла
Еще одна важнейшая функция BMS – защита от перезаряда. Допустим, есть три элемента с разной емкостью. Во время зарядки элемент с большей емкостью зарядится сильнее двух остальных. Чтобы этого не допустить, BMS использует так называемое выравнивание заряда элементов (cell balancing). При этом все элементы заряжаются и разряжаются равномерно и защищены от чрезмерного или недостаточного заряда.
И в этом преимущество Tesla над технологией аккумуляторов Nissan. У Nissan Leaf серьезная проблема с охлаждением аккумулятора из-за большого размера элементов и отсутствия системы активного охлаждения.
батарея Nissan Leaf и Tesla
У конструкции с множеством маленьких цилиндрических элементов есть и еще одно преимущество: при большом расходе энергии нагрузка распределяется равномерно между всеми элементами. Если бы вместо множества маленьких элементов был один огромный элемент, из-за постоянных нагрузок он очень быстро бы пришел в негодность. Tesla сделала ставку на маленькие цилиндрические элементы, технология производства которых уже хорошо отработана. Более подробно про батарейный модуль Тесла читайте в этой статье.
Защитный SEI-слой
Во время первой зарядки внутри литий-ионного элемента происходит одно замечательное явление, спасающее элемент от скорой «смерти». Неожиданной проблемой оказались электроны, находящиеся в слое графита. При контакте с электролитом они начинают разрушать его. Но одно случайное открытие позволило не допустить контакт электронов с электролитом. При первой зарядке элемента, как мы уже говорили, ионы лития движутся сквозь электролит. В процессе этого движения молекулы растворенного в электролите вещества покрывают ионы. Достигнув графитового слоя, ионы лития вместе с молекулами раствора электролита реагируют с графитом, образуя так называемая промежуточную фаза твердого электролита (solid electrolyte interphase, или SEI-слой). Этот слой предотвращает контакт электронов с электролитом, предохраняя электролит от разрушения.
защитный SEI-слой
Вот так проблема случайным образом решилась сама собой. Хотя эффект SEI был открыт случайно, в последующие два десятилетия ученые целенаправленно улучшали процесс, подбирая наиболее эффективную толщину и химический состав.
Заключение
Сегодня уже удивительно, что еще два десятка лет назад в электронных гаджетах не применялись литий-ионные аккумуляторы. Индустрия литий-ионных аккумуляторов развивается с фантастической скоростью: ожидается, что в ближайшие несколько лет их рынок достигнет 90 млрд. долларов. Современные литий-ионные батареи способны выдержать примерно 3000 циклов зарядки-разрядки – это уже приличный показатель, но еще есть, куда расти. Лучшие умы во всем мире трудятся над тем, чтобы повысить их долговечность до 10 000 циклов. В этом случае аккумулятор электромобиля не придется заменять целых 25 лет. Миллионы долларов вкладываются в исследования, которые позволят заменить графит на кремний в качестве «хранилища» в литий-ионных элементах. Если это удастся сделать, их емкость возрастет более чем в пять раз! В настоящее время мир переходит уже на литий-полимерные аккумуляторы, которые показали себя чуточку лучше, чем литий-ионные.
Источник