Литиевый аккумулятор состав электролита

На Токе заряженный портал

Химия литиевых аккумуляторов формата 18650: отличия, преимущества и недостатки — На токе

  • Статьи об электротранспорте
  • Технологии
  • Аккумуляторы
  • Химия литиевых аккумуляторов формата 18650: отличия, преимущества и недостатки

Химия литиевых аккумуляторов формата 18650: отличия, преимущества и недостатки

Многие из пользователей юзают разнообразные перезаряжаемые источники питания — используют они их и для вейпинга, и для других целей. Но, довольно большое количество фанатов электронных сигарет не знают, что одни электроаккумуляторы дозволяется использовать в модах, а другие вполне могут представлять опасность для юзера. В данной теме я хочу объяснить химию Li-ion аккумуляторов и её различия доступным для среднестатистического обывателя языком, чтобы юзер понимал, с чем он реально имеет дело.

Что в имени твоём?

Начнём с таблицы, в которой приведены полные названия электронакопителей формата 18650, химические формулы, а также их сокращения:

Любой из приведённых выше химсоставов, может предложить как положительные качества, так и отрицательные. Далее в теме, я заострю внимание на каждом химическом составе, на примере распространённых моделей форм-фактора 18650. Но сперва следует разобраться, что конкретно означают все эти названия.

Li-ion АКБ самого популярного формата 18650 имеет в своём распоряжении три составляющих: анод, катод и электролит.

Читайте также:  Как подобрать мощный аккумулятор

Что касается анода, то практически у всех Li-ion батарей он одинаковый — это смесь углерода/кремния и графита. Катод же напротив, является тем, чем АКБ разнятся между собой и именно он придаёт каждой модели аккумулятора неповторимые свойства.

Формулы в размещённой в начале темы таблице, касаются катода электронакопителя. Компромиссами химсостава отрицательного электрода являются мощность, энергия, продолжительность службы, а также безопасность. К примеру, химия ICR, в основе которой кобальт, предлагает повышенную энергию и солидную ёмкость, но в то же время, к сожалению, она не является самой безопасной. А вот если взять для сравнения IMR, то этот состав будет безопаснее, однако в его распоряжении более скромная пропускная способность, относительно ICR. Если добавить к марганцу никель, то получим более высокий показатель удельной энергии.

Вот мы и узнали, что конкретно означает химсостав литиевой батареи, а теперь, настало время обсудить каждый в деталях.

Литий-магний (короткие названия IMR/LMO)

Такие девайсы высокого тока применяются главным образом в вейпинге и мощных осветительных приборах. Марганец внёс свою лепту в благое дело: он даёт возможность АКБ разряжаться при высоком токе не слишком греясь по ходу дела. Что это даёт пользователю? Безопасность! По этому показателю, IMR обыгрывает многие старые электронакопители ICR. Кроме того, большинство литий-магниевых батарей не нуждаются в интегрированной защитной плате PCB.

Для полного счастья, в состав большинства нынешних высокотоковых АКБ, вдобавок внедряется никель.

Литий-марганцевый никель (короткие названия INR/NMC)

INR является полноправным чемпионом среди батарей формата 18650! Он обыгрывает предыдущего оппонента по объёму внедрённого в его состав никеля, что делает INR «гибридом». Данная химия комбинирует в себе пониженное сопротивление марганца, повышенную энергию никеля и в придачу безопасность. Этот химсостав демонстрирует достаточно большую ёмкость и высокий ток разряда.

Что касается вейперов, то для них INR просто находка: он обладает крайней стабильностью, а это в свою очередь позволяет не встраивать вспомогательное средство защиты. Ещё, INR может похвастать самыми большими инновациями. Такие мировые гиганты электроники как Sony, Samsung и LG, занимаются разработками электроаккумуляторов INR следующей генерации с разными пропорциями кобальта, марганца и никеля.

Популярные модели INR 18650:

  • Samsung 25R(ссылка);
  • Sony VTC4(ссылка);
  • Sony VTC5(ссылка);
  • LG HE2(ссылка).

*Ссылки на AliexPress. На территории РФ, эти элементы также опасно покупать как и на Али, почти всегда можно нарваться на левак, но на Али хотя бы цена ниже да и производители китайские, земляки наверное лучше копируют. Сами ссылки не проверены нами, и размещены для наглядности.(прим. ред.)

Литий-алюминий (короткое название NCA)

Данный химсостав имеет схожесть с INR, но у него отсутствуют положительные свойства марганца. Как правило, подобная продукция может выдержать невысокие разрядные токи, однако она компенсирует это недоразумение более солидной ёмкостью и длительностью жизненного цикла. У NCA имеет место ещё одно достоинство — они обладают повышенной устойчивостью к физическим воздействиям, что позволяет эффективно использовать их на электрических велосипедах и не только. К примеру, популярный американский производитель электрокаров Tesla, устанавливает подобное оборудование на свои элитные транспортные средства.

Популярные модели NCA 18650:

  • Panasonic 18650PF(ссылка);
  • Panasonic 18650B(ссылка);
  • LG MH1(ссылка);

*Ссылки на AliexPress. На территории РФ, эти элементы также опасно покупать как и на Али, почти всегда можно нарваться на левак, но на Али хотя бы цена ниже да и производители китайские, земляки наверное лучше копируют. Сами ссылки не проверены нами, и размещены для наглядности.(прим. ред.)

Литий-никель-кобальт (короткое название NCO)

Такой состав является скорее экзотикой, чем массовым продуктом. Для тех, кто всё-таки захочет опробовать на себе NCO, могу дать совет: ищите модель Samsung 29E, в распоряжении которой ёмкость 2900 mAh и предельный непрерывный разрядный ток 8,2 A.

Литий-кобальт (короткие названия ICR/LCO)

ICR предлагает юзерам самую большую удельную энергию, но в то же время имеется при этом и весьма серьёзное разочарование: литий-кобальт — опаснейший химсостав среди всех Li-ion накопителей форм-фактора 18650. Вдобавок, данное обстоятельство будет являться сложностью для высокотокового разряда, ведь ICR небезопасно подвергать разрядке сверх допустимой ёмкости.

Если вы планируете применять такие накопители для вейпинга либо мощного осветительного оборудования, то обязательно выбирайте модель с интегрированной защитной платой PCB. Она зачастую добавляется сторонними разработчиками, такими например, как Trustfire.

ICR — не самый лучший выбор для фонариков и фотокамер, зато такие аккумуляторы можно вполне юзать к примеру на ноутбуке. Батарейки доступны по цене, однако многим покажутся слишком капризными.

Литий-фосфат (короткие названия IFR/LFP)

IFR много в чём великолепны, однако присутствуют и недостатки: у них низкое номинальное напряжение — всего 3,2 V, что не даёт изделиям возможность влиться в когорту высокотоковых электронакопителей. Подливает масла в огонь и другое малоприятное обстоятельство: процесс саморазряда протекает у таких химических составов быстрее, чем у электробатарей с иным содержанием.

Из достоинств можно выделить такие: высокие номинальные токи (до 30C) и при этом сохраняется высокий показатель ёмкости, также IFR переносят больше зарядов/разрядов по сравнению с конкурентами.

Заключение

Безусловно, любой уважающий себя пользователь просто обязан знать как расшифровываются все эти заумные обозначения. Но и это ещё не всё: нужно понимать, что разные химсоставы, обладают и разными свойствами, которые, естественно, нужно уметь применять с умом, то есть, использовать на тех устройствах, где они больше всего уместны и принесут максимум пользы, тогда и проблем у вас не будет!

Источник

Как устроен Li-Ion аккумулятор?

Автономную работу всевозможных устройств,отмобильных гаджетов до персонального электротранспорта, обеспечивают аккумуляторы. С учетом необходимых значений емкости и напряжения, они объединяются в аккумуляторные батареи. Ключевые характеристики АКБ – емкость, напряжение, масса, время восполнения заряда, допустимый температурный режим – зависят от типа используемой химии.

Для автономного питания современной техники успешно используются литий-ионные аккумуляторы. Они имеют большой циклический ресурс, малый саморазряд, широкий температурный диапазон и солидную удельную емкость. Катод у таких элементов выполнен из производных лития, а заряд переносят ионы Li. Далее мы подробнее рассмотрим устройство Li-ion аккумуляторов и принцип их работы.

Как устроена литий-ионная батарея?

В основе конструкции литий-ионного аккумулятора– 2 составляющие: анод, выполненный из пористого углерода на фольге из меди, и катод – из оксида лития на фольге из алюминия. Их разделяет пористый сепаратор из полипропилена, обильно пропитанный электролитом, который выполняет функции проводника. Система находится в герметичном корпусе. Электроды подключены к токосъемникам. Некоторые аккумуляторы дополнительно имеют клапан-предохранитель для сброса внутреннего давления.

Пластины из меди и алюминия, смазанные электролитом и разделенные пористой прослойкой, обычно сворачиваются в рулон. В итоге получается элемент цилиндрической формы. При другом способе укладки пластин получаются изделия в форме призм и пакетов. Состав катода бывает разным: LiMn2O4, LiFePO4, LiCoO2,LiMnO2, LiMnRON, LiC6, LiNiO2и т.д.

Типы Li-ionаккумуляторов

В зависимости от используемого материала катода литиевые элементы бывают:

  1. Литий-марганцевые (LiMn2O4, LNO). Имеют меньшее внутреннее сопротивление, высокую мощность и умеренную емкость – 100–150 Вт·ч/кг. Стандартные токи заряда и разряда – до 1С, но есть модели с С-рейтингом зарядки до 3С и С-рейтингом разряда до 10С, а в импульсном режиме – до 50С. Ресурс – около 500 циклов. Применяются такие накопители в электроинструменте, силовых агрегатах, медицинском оборудовании.
  2. Литий-кобальтовые (LiCoO2, LCO). Имеют высокую энергоемкость (150–200 Вт·ч/кг), но уступают аналогам по термической стабильности и сроку службы (500–1000 циклов). Токи заряда и разряда для таких элементов не должны превышать 1С. Накопители энергии на основе кобальта встречаются все реже, но еще используются в мобильных телефонах, цифровых камерах, ноутбуках.
  3. Литий-никель-марганец-кобальт-оксидные (NMC, NCM). Обеспечивают высокую мощность и емкость – 150–220 Вт·ч/кг, выдерживают 1000–2000 циклов. Стандартные токи заряда и разряда – 1С. Используются в медицинском и промышленном оборудовании, электровелосипедах и других видах электротранспорта.
  4. Литий-никель-кобальт-алюминий-оксидные (NCA). Отличаются высокой удельной энергоемкостью – 200–260 Вт·ч/кг. Имеют ресурс около 500 циклов, зарядные токи 0,7С и разрядные 1С. Обеспечивают автономное питание промышленного и медицинского оборудования, электрических силовых агрегатов и других устройств, требующих высокой емкости.
  5. Литий-железо-фосфатные (LFP, LiFePO4). Отличаются большим ресурсом (более 2000 циклов), термической и химической стабильностью, высокой безопасностью эксплуатации и малым внутренним сопротивлением. Их удельная энергоемкость составляет 90–120 Вт·ч/кг, ток зарядки – 1С, ток разрядки – до 25С. Используются такие элементы питания в устройствах, для которых важна выносливость аккумов, способность работать на морозе и выдерживать высокие токи нагрузки.
  6. Литий-титанатные (LiTi). Отличаются низким номинальным напряжением (2,4 В) и удельной энергоемкостью 70–80 Вт·ч/кг, но быстро заряжаются, имеют широкий температурный диапазон и ресурс 3000–7000 циклов. Номинальные токи зарядки 1С, максимум – 5С. Допустимые разрядные токи – 10С, а при импульсной подзарядке – 30С. Литий-титанатные элементы считаются самыми безопасными. Используются они в уличном освещении, ИБП, электротранспорте.

Как работает литиевый аккумулятор?

Принцип работы Li-ion аккумуляторов идентичен для элементов всех типов, независимо от материала катода.Когда на электроды подается напряжение – «плюс» на оксид лития и «минус» на графит – положительно заряженные ионы лития отцепляются от молекул оксида и переходят на углеродную пластинку. В результате протекает окислительная реакция, и аккумулятор заряжается.

При работе литиевого аккумулятора под нагрузкой протекает обратный процесс. Ионы Li + возвращаются на пластинку из оксида лития, в свое стандартное состояние. Графитовая пластинка на фольге из меди становится «минусом», а оксид лития на фольге из алюминия – «плюсом».

Особенности зарядкиLi-ionэлементов

Литий-ионные элементы питания чувствительны к перезаряду. На поверхности анода при чрезмерном заряде осаждается металлический литий. Он выглядит как мелкий мшистый осадок и способен вступать в реакцию с электролитом. На катоде при перезаряде активно выделяется кислород. Внешне это может проявляться в виде интенсивного нагрева, роста давления и разгерметизации элемента.

Заряжаются Li-ionаккумуляторы в 2 этапа:

  1. При стабильном значении тока 0,2С–1С до рекомендованного производителем напряжения, обычно – 4,1–4,2 В. Длится эта стадия около 40 минут.
  2. При неизменном напряжении. Процесс зарядки завершается, когда значение зарядного тока уменьшается до величины, составляющей 3% от начального значения.

Быстрее происходит зарядка в импульсном режиме.Но для продления срока службы литиевых элементов их рекомендуется заряжать током, номинал которого составляет 50% от значения емкости, т.е. 0,5С.

Защита литиевых аккумуляторов

Элементы питания на основе лития защищены от коротких замыканийвнутри системы, например, с помощью 2-слойного сепаратора. Один из его слоев выполняется не из полипропилена, а из аналога полиэтилена. При риске короткого замыкания, к примеру, если дендриты лития прорастают к катоду, защитный слой локально нагревается, частично плавится, становится непроницаемым и блокирует последующее прорастание дендритов.

Для защиты от избыточного заряда и глубокого разряда накопители энергии снабжаются специальными ограничителями – платами защиты по току и напряжению. Они не допускают выхода напряжения за границы рекомендованного диапазона и в критических ситуациях автоматически отключают элемент от питания или нагрузки.

Поэтому для безопасной работы элементов и аккумуляторных батарей важно использовать BMSплаты. В противном случае высок риск повреждения аккумуляторов и их преждевременного выхода из строя. Такой контроллер зарядно-разрядного процесса может устанавливаться и на отдельные аккумуляторы, и на собранную из них батарею.

Производство литиевых элементов питания

Сырье для основных элементов в схеме Li-ion аккумуляторов – катода и анода – имеет вид мелкофракционного черного порошка. Чем мельче частицы, тем больше получается эффективная площадь электродов. Оптимальная форма частиц – сферическая, с гладкими краями, т.к. неровности чувствительны к токовым нагрузкам.

Производственный процесс состоит из следующих этапов:

  1. Порошковидные материалы наносятся в виде суспензии на фольгу. Аноды и катоды обычно производятся в различных цехах, чтобы обеспечить максимальную чистоту материалов. Металлическая фольга играет роль токоприемника.
  2. Фольга с нанесенными материалами сушится, разделяется на полоски и складывается в несколько слоев. Процесс сворачивания строго контролируется, т.к. любые дефекты способны привести к коротким замыканиям внутри системы.
  3. Между пластинами анода и катода зажимается сепаратор, обработанный электролитом.
  4. Пластинки сворачиваются рулоном или по другой схеме и помещаются в корпус.

Готовые изделия проходят тестирование – контролируемый цикл заряда-разряда. Подзарядку начинают с минимального напряжения и с постепенным его повышением.Протестированные изделия заряжаются до оптимального уровня, чтобы исключить риск значительного падения напряжения из-за саморазряда, и поставляются в продажу.

Предыдущая статья нашего блога посвящена сигнализации для электровелосипедов.

Источник

Оцените статью