- Расчёт генератора для ветряка
- Расчёт диаметра дисков генератора
- Расчёт размеров статора и катушек
- Расчёт катушек сколько поместится витков провода
- Расчёт Напряжения, сопротивления, и мощности генератора
- Расчёт мощности генератора
- Расчёт винта для ветрогенератора
- Сделаем ветряной генератор своими руками
- Общий принцип работы
- Расчет лопастного ветрогенератора
- Выбор генератора
- Расчет мультипликатора
- Мачта
- Дополнительное электрооборудование
Расчёт генератора для ветряка
Расчёт мощности генератора строится по закону Ома, характеристики генератора зависят от выходного напряжения, и сопротивления фаз генератора. Задача спроектировать генератор так, чтобы он работая в паре с ветроколесом (винтом), был максимально эффективен. Я хочу получить максимально возможное на ветре 4-7м/с, но чтобы зарядка АКБ начиналась как можно раньше, желательно с 2м/с.
Расчёт дискового аксиального генератора должен начинаться с чертежей, чтобы понять какой диаметр дисков нужен, какие размеры катушек, и какого диаметра заливать смолой статор генератора. Без рисования ничего не получится, а рисовать можно хоть на бумаге (вспомнив уроки геометрии), или на компьютере. Но потом всё равно придётся рисовать на фанере, чтобы точно разместить катушки перед заливкой статора.
Все размеры генератора строятся исходя из размеров магнитов. Я купил 16 магнитов размером 50×30×10 мм, магниты дорогие, поэтому денег хватило только на 16 штук. Вкратце скажу что прямоугольные магниты лучше чем круглые, и чем крупнее магниты, тем потом легче делать катушки, так-как и катушки тогда тоже будут по размерам крупнее. Генератор трёхфазный, по этому если магнитов 16шт, то будет по 8 шт на дисках, а катушек 12шт,
Расчёт диаметра дисков генератора
Оптимальное расположение магнитов по кругу должно быть с расстоянием между магнитами равным половине ширины магнитов. У меня магниты 50×30×10 мм. Ширина магнитов 30 мм, прибавляем половину ширины (30+15=45 мм), и умножаем на 8 магнитов, и делим на π(3.14). Внутренний диаметр по магнитам (30+15*8:π= 114.5 мм) равен 114мм. Чтобы узнать внешний диаметр нужно прибавить высоту магнитов, у меня высота магнитов 50 мм. Значит (114+50+50=214 мм). Теперь я знаю диаметр дисков, я сделаю диски диаметром не 214 мм, а 220 мм, добавлю 6мм в диаметре.
Для примера: если вы хотите например поставить по 12 магнитов на дисках, а магниты размером 40×40×10 мм, то тогда получится (40+20*12:π+40+40) диаметр 309мм. Или если магниты 45*25*8 мм, то (45+22,5*12:π+45+45) диаметр дисков получится 347 мм. В общем не важно какие по размерам магниты, и их число по кругу, диаметр дисков строится от ширины магнитов, и расстояния между магнитами должно быть равным половине ширины магнитов.
У меня получилось вот так, я рисовал не на бумаге, а в планшете. Потом снова придётся рисовать уже на реальных дисках. Я думаю проблем с разметкой на дисках быть не должно, размечается диск на секторы, в моём случае на 8 секторов, и наклеиваем магниты.
Расчёт размеров статора и катушек
Теперь вычислим размеры статора и катушек. Так-как у нас внешний диаметр по магнитам 214мм, то рисуем круг диаметром 214мм. Высота магнитов 50 мм, значит (214-50-50=114 мм), рисуем второй круг внутри первого диаметром 114мм. Катушек у нас должно быть 12 штук, значит делим круг на 13 секторов, это по 30° на сектор.
В каждый сектор должна поместится катушка, при этом внутреннее отверстие катушки по высоте должно быть равно высоте магнита, то-есть 50 мм. А внешняя высота будет зависеть от ширины намотки катушки, А ширина катушки должна быть равна размерам сектора. Ниже на рисунке я думаю всё понятно.
Катушки треугольной формы будут лучше, так-как чем прямей витки тем выше эффективность катушки.
Расчёт катушек сколько поместится витков провода
Теперь когда нам известны размеры катушек тот можно подумать каким проводом мотать катушки и сколько витков поместится. Если магниты шириной 10мм, то статор должен быть по ширине 8 м, так-как расстояние между магнитами на противоположных дисках должно быть 10 мм. Но я хочу сделать статор толщиной 10 мм, а расстояние между магнитами получится тогда 12 мм. Статор толщиной 10 мм, и по 1мм это зазор между статором и магнитами.
Ширина борта катушки у меня получилась 14 мм, можно сделать и меньше, можно чуть больше уменьшив внутреннее отверстие катушки. Я выбрал оптимально 14 мм. Если мотать проводом диаметром 1 мм, то поместится ровно 14 витков по ширине борта катушки. Толщина статора 10 мм, значит и толщина катушки 10 мм, но так как провод начала катушки выходит сбоку, то он съедает 1мм, и остаётся 9 мм. Таким образом размеры под витки провода 14*9мм, это 126 витков.
Если провод будет например 1,5 мм в диаметре, то поместится (14:1.5=9.3), (9:1.5=6), (6*9=45) 45 витков. Думаю с этим понятно, есть площадь, а сколько витков поместится зависит от диаметра провода.
Расчёт Напряжения, сопротивления, и мощности генератора
Напряжение генератора зависит от магнитной индукции магнитов (Тл), скорости движения магнитов, количества витков в катушках, и длины активного проводника. Напряжение или будет правильней — ЭДС (электродвижущая сила) зависит от магнитной индукции магнитов. Неодимовые магниты имеют индукцию на поверхности магнита 1.2-1.6 Тесла. Но какая индукция будет в зазоре между магнитами мы не можем знать, если у нас нет измерителя. Поэтому при расчёте генератора если расстояние между магнитами равно ширине магнитов, то магнитную индукцию магнитов можно брать как 0.8-1 Тл. Ели магниты марки N35 то 0.8Тл, если N52 то 1Тл, но в реальном генераторе может быть всё не так.
Если расстояние больше то понятно что магнитная индукция в зазоре будет ниже, ну а если ближе то выше. Магнитная индукция магнитов нужна при расчёте напряжения генератора. Формула расчёта ЭДС генератора выглядит так:
Формула E=B*V*L где:
(B) — я буду брать как 0.8 Тл, так как мгниты у маня толщиной 10мм, а зазор между магнитами 12 мм, если будет больше то хорошо,а так будем исходить из меньшего.
(V) — скорость движения магнитов зависит от длины окружности, по которой они описывают круг за один оборот. В с лучае с дисковым генераторам окружность берётся по середине магнитов. У нас как мы помним внешний диаметр по магнитам 214 мм, значит по середине магнита диаметр будет (214-2,5-2,5=209 мм). Чтобы узнать длину окружности воспользуемся формулой 2*πr^2 2*(3.14*(104*104)=339 мм), то есть 0.34 метра.
(L) — Активная длина проводника это та часть, которая попадает под магнит. У меня магнит по высоте 50 мм, значит активная длина 50 мм, или 0.05 метра.
Теперь соберём полученные цифры, (0.8*0.34*0.05=0.0136V), напряжение одного витка у нас получилось 0.0136V. В катушках у нас по 126, а катушек в одной фазе 4, значит (0.0136*126*4=6.8V). Таким образом напряжение одной фазы генератора при 60об/м будет 6.8 вольта. При соединении фаз звездой напряжение возрастёт в 1.7 раза,и составит 11.5 вольт. Напряжение линейно зависит от скорости движения магнитов, по этому если увеличить скорость в 5 раз, то и напряжение увеличится в 5 раз, если в 10 раз увеличить скорость, то напряжение увеличится в 10 раз. Например при 600 об/м напряжение составит 115 вольт, а при 300 об/м 57.5 вольт.
Сопротивление фазы генератора рассчитывается очень просто, нужно вычислить общую длину медного провода в фазе. У меня средняя длинна витка в катушках равна примерно 0.16 метра, значит (0.16*126*4=80.64 м). В фазе 80.64 метра провода, провод диаметром 1 мм, сопротивление одного метра провода сечением 1 мм равно 0,0224 Ом. Значит (80.64*0.0224=1.8 Ом). Сопротивление проводов различного диаметра можно посмотреть здесь Таблица сопротивлений медного провода
Расчёт мощности генератора
Теперь зная напряжение генератора, и сопротивление обмотки можно вычислить мощность генератора при разных оборотах. Напряжение генератора будет проседать до напряжения аккумулятора, а сила тока при просадке напряжения будет зависеть от сопротивления обмотки генератора. Например при 300 об/м напряжение генератора соединённого звездой 57.5 вольт, отнимем напряжение аккумулятора (13V), тогда (57-13=44V). То-есть при 300 об/м напряжение генератора при заряде акб просядет на 44 вольта. А ток заряда заряда АКБ зависит от сопротивления обмоток. При соединении звездой сопротивление увеличивается в два раза от сопротивления одной фазы, по-этому сопротивление (1.8*2=3.6 Ом). Теперь делим 44 на 3.6 и получим (44:3.6=12.2А). В итоге при 300 об/м ток зарядки АКБ составит 12.2А, а мощность (12.2*13=158 ватт).
Вот так можно вычислить мощность на любых оборотах. Но нужно ещё помнить про КПД генератора, чем больше просадка напряжения тем ниже КПД. При садке напряжения на треть КПД около 80%, а дальше он только ухудшается. Это нужно помнить при расчёте винта, чтобы подобрать правильно мощность винта, чтобы она соответствовала мощности генератора.
У меня получилась вот такая картина по мощности генератора соединённого звездой.
Начало заряда при 70 об/м 13,7 вольта.
обороты/напряжение ХХ/ток заряда/мощность
60/11,5//0/0/
120/23/2,7/36
180/34/6/77
240/46/9/120
300/57/12/160
360/69/15/202
420/80/19/243
480/92/22/285
540/103/25/326
600/115/28/368
В итоге при соединении звездой мощность не впечатлила, и слишком рано начинается зарядка АКБ. Быстроходный винт подобрать не получается, а с тихоходным обороты получаются низкие. Вообще вот когда вы рассчитаете мощность генератора, только после этого нужно подбирать винт. Винт нужно смотреть в программе, смотреть на мощность винта, его обороты, быстроходность, КИЭВ, и подгонять под генератор.
Этот генератор будет работать на АКБ 24 гораздо лучше при соединении фаз звездой, на я собираюсь заряжать 12в АКБ, по-этому придётся генератор соединить треугольником. При этом сопротивление генератора станет равно фазному, это 1.8 Ом, и напряжение станет равно напряжению одной фазы, то-есть 6.8 вольт.
Значит начало заряда при 120 об/м,
обороты/напряжение ХХ/ток заряда/мощность
120/13.6/0/0
180/20/4/53
240/27/7.8/102
300/34/11.6/151
360/41/15.5/200
420/47/19/249
480/54/23/300
540/61/27/350
600/68/30/400
Расчёт винта для ветрогенератора
Теперь когда параметры будущего генератора известны можно рассчитать винт для него. В программе по расчёту лопастей из ПВХ труб я прикинул винт диаметром 2,6 метра, с быстроходностью Z7. Я долго подгонял размеры винта, и размеры лопастей чтобы и зарядка начиналась как можно раньше, и чтобы винт был максимально эффективен в широком диапазоне.
Начало зарядки акб у меня получилось при 2,5 м/с. При 4 м/с мощность ветрогенератора составит 50-55 ватт, при этом мощность винта при 180 об/м составит 75 ватт. Запас по мощности это на КПД генератора. При 5 м/с мощность ветрогенератора составит около 100 ватт. А при 6 м/с будет уже 200 ватт, и винт будет иметь максимальный КИЭВ 0.45, обороты при этом 300-310 об/м. При 10 м/с с падением КИЭВ до 0.27 винт сможет раскрутить генератор до 600-650 об/м. Мощность у винта при этом будет около 850 ватт, а генератор сможет дать около 500 ватт мощности.
В общем с этим винтом ветрогенератор получится мощностью 500 ватт при 10 м/с, и максимальная эффективность будет при ветре 5-7 м/с. При этом работать ветряк будет с 2,5 м/с. Стартовый момент таких быстроходных лопастей очень низкий, всего 0.13 Нм, но так-как генератор не имеет залипания я думаю проблем со стартом не будет, и ветряк будет запускаться с 2-3м/с.
Ниже скриншоты из программы по расчёту лопастей. Первый это основные данные винта, а второй это данные для вырезания лопасти из трубы.
При подборе винта для генератора нужно понимать что у винта есть быстроходность, обороты, и КИЭВ, который изменяется. Например Я сначало взял винт диаметром 3 метра, посмотрел и понял что у винта не хватает оборотов при хорошем КИЭВ. Если увеличивать быстроходность то КИЭВ резко падает, а при среднем и сильном ветре у вита перебор по мощности так-как он не может крутить генератор быстро. То-есть несоответствие мощности винта и генератора, от этого общий КПД ветрогенератора очень низкий.
Тогда я стал уменьшать диаметр сначала добившись чтобы при ветре 3-4 м/с мощность генератора и винта была одинаковой. Я уменьшил винт до 2,4 метра, и поставил 5 лопастей. При слабом ветре 3-4 м/с стало не плохо, КИЭВ 0,45, но оборотов маловато. Тогда я оставил три лопасти и поднял диаметр до 2.6 метра. При этом я получил и хороший показатель на ветре 3-4 м/с с оборотами при этом ветре 120-180 с КИЭВ 0,35-0,40. И максимальная эффективность достигается при 6 м/с с КИЭВ 0,45. При этом винт максимально быстроходный, и так-сказать тяговитый в широком диапазоне ветра, и быстроходности.
Если бы я сделал тихоходный пяти-лопастной винт, то я бы получал на 30% меньше энергии в сравнении с этим трёх-лопастным. Шести-лопастной дал бы результат ещё, так-как у него обороты в два раза ниже чем у трёх-лопастного. По-этому я отказался от тихоходных винтов, что я зря такие деньги потратил на магниты, провод и прочее, чтобы потом получать намного меньше чем это возможно.
Хотя если сделать двухлопастной винт, ро можно ещё на 30% увеличить обороты и мощность ветрогенератора. Но тогда придется делать всё очень точно и сбалансировано, иначе будут вибрации при работе, что очень не приятно. Также двух и однолопастные винты сильно «колбасит» при разворотах, и это тоже неприятно. По-это трёхлопастной винт это оптимально для ветрогенератора, что в принципе давно определили производители.
Следующий этап это по имеющимся размерам сделать чертежи деталей генератора, об этом в следующей части. Чертежи деталей для генератора
Источник
Сделаем ветряной генератор своими руками
Зачастую у владельцев частных домов возникает идея о реализации системы резервного электропитания. Наиболее простой и доступный способ — это, естественно, бензиновый или дизельный генератор, однако многие люди обращают свой взгляд на более сложные способы преобразования так называемой даровой энергии (солнечного излучения, энергии текущей воды или ветра) в электричество.
Каждый из этих способов имеет свои достоинства и недостатки. Если с использованием течения воды (мини-ГЭС) все понятно — это доступно только в непосредственной близости от достаточно быстротекущей реки, то солнечный свет или ветер можно использовать практически везде. Оба этих метода будут иметь и общий минус — если водяная турбина может работать круглосуточно, то солнечная батарея или ветрогенератор эффективны только некоторое время, что делает необходимым включение аккумуляторов в структуру домашней электросети.
Поскольку условия в России (малая длительность светового дня большую часть года, частые осадки) делают применение солнечных батарей неэффективным при их современных стоимости и КПД, наиболее выгодным становится конструирование ветрового генератора. Рассмотрим его принцип действия и возможные варианты конструкции.
Так как ни одно самодельное устройство не похоже на другое, эта статья — не пошаговая инструкция, а описание базовых основ конструирования ветрогенератора.
Общий принцип работы
Основным рабочим органом ветрогенератора являются лопасти, которые и вращает ветер. В зависимости от расположения оси вращения ветрогенераторы делятся на горизонтальные и вертикальные:
- Горизонтальные ветрогенераторы наиболее широко распространены. Их лопасти имеют конструкцию, аналогичную пропеллеру самолета: в первом приближении это — наклонные относительно плоскости вращения пластины, которые преобразуют часть нагрузки от давления ветра во вращение. Важной особенностью горизонтального ветрогенератора является необходимость обеспечения поворота лопастного узла сообразно направлению ветра, так как максимальная эффективность обеспечивается при перпендикулярности направления ветра к плоскости вращения.
- Лопасти вертикального ветрогенератора имеют выпукло-вогнутую форму. Так как обтекаемость выпуклой стороны больше, чем вогнутой, такой ветрогенератор вращается всегда в одном направлении независимо от направления ветра, что делает ненужным поворотный механизм в отличие от горизонтальных ветряков. Вместе с тем, за счет того, что в любой момент времени полезную работу выполняет только часть лопастей, а остальные только противодействуют вращению, КПД вертикального ветряка значительно ниже, чем горизонтального: если для трехлопастного горизонтального ветрогенератора этот показатель доходит до 45%, то у вертикального не превысит 25%.
Поскольку средняя скорость ветров в России невелика, даже большой ветряк большую часть времени будет вращаться достаточно медленно. Для обеспечения достаточной мощности электропитания от должен соединяться с генератором через повышающий редуктор, ременной или шестеренчатый. В горизонтальном ветряке блок лопасти-редуктор-генератор устанавливается на поворотной головке, которая дает им возможность следовать за направлением ветра. Важно учесть, что поворотная головка должна иметь ограничитель, не дающий ей сделать полный оборот, так как иначе проводка от генератора будет оборвана (вариант с использованием контактных шайб, позволяющих головке свободно вращаться, более сложен). Для обеспечения поворота ветрогенератор дополняется направленным вдоль оси вращения рабочим флюгером.
Наиболее распространенный материал для лопастей — это ПВХ-трубы большого диаметра, разрезаемые вдоль. По краю к ним приклепываются металлические пластины, приваренные к ступице лопастного узла. Чертежи такого рода лопастей наиболее широко распространены в Интернете.
На видео рассказывается про ветрогенератор, изготовленный своими руками
Расчет лопастного ветрогенератора
Так как мы уже выяснили, что горизонтальный ветрогенератор значительно эффективнее, рассмотрим расчет именно его конструкции.
Энергия ветра может быть определена по формуле
P=0.6*S*V³, где S — это площадь круга, описываемого концами лопастей винта (площадь ометания), выраженная в квадратных метрах, а V — расчетная скорость ветра в метрах в секунду. Также нужно учитывать КПД самого ветряка, который для трехлопастной горизонтальной схемы составит в среднем 40%, а также КПД генераторной установки, составляющий на пике токоскоростной характеристики 80% для генератора с возбуждением от постоянных магнитов и 60% — для генератора с обмоткой возбуждения. Еще в среднем 20% мощности израсходует повышающий редуктор (мультипликатор). Таким образом, окончательный расчет радиуса ветряка (то есть длины его лопасти) для заданной мощности генератора на постоянных магнитах выглядит так:
R=√(P/(0.483*V³))
Пример: Примем требуемую мощность ветроэлектростанции в 500 Вт, а среднюю скорость ветра — в 2 м/с. Тогда по нашей формуле нам придется использовать лопасти длиной не менее 11 метров. Как видите, даже такая небольшая мощность потребует создания ветрогенератора колоссальных габаритов. Для более-менее рациональных в условиях изготовления своими руками конструкций с длиной лопасти не более полутора метров ветрогенератор сможет выдавать всего лишь 80-90 ватт мощности даже на сильном ветру.
Недостаточно мощности? На самом деле все несколько иначе, так как на самом деле нагрузку ветрогенератора питают аккумуляторы, ветряк же только заряжает их в меру своих возможностей. Следовательно, мощность ветроустановки определяет периодичность, с которой она сможет осуществлять подачу энергии.
В Интернете часто можно найти статьи под броскими заголовками наподобие «Ветрогенератор для отопления дома». На самом же деле, как вы уже могли понять из приведенных расчетов, постоянно поддерживать потребляющее несколько киловатт-часов электрическое отопление сможет разве что сеть из не одного десятка самодельных установок.
Предлагаем посмотреть еще один рассказ про ветрогенератор и его изготовление в домашних условиях
Выбор генератора
Наиболее логичным вариантом генераторной установки для самодельного ветряка кажется автомобильный генератор. Такое решение позволяет легко скомпоновать установку, так как генератор уже имеет и крепежные точки, и шкив для ременного мультипликатора. Купить и сам генератор, и запчасти к нему нетрудно. Кроме того, встроенное реле-регулятор позволяет непосредственно подключить его к 12-вольтовой аккумуляторной батарее, а к ней, в свою очередь — инвертор для преобразования постоянного тока в переменный напряжением 220В.
Но, как уже было сказано выше, КПД генераторов с обмоткой возбуждения достаточно низок, что весьма чувствительно для и без того маломощного ветряного генератора. Второй минус в том, что при разряженном аккумуляторе автомобильный генератор не сможет возбудиться.
В ряде самодельных конструкций можно встретить тракторные генераторы Г-700 и Г-1000. Их КПД ничуть не больше, полезным отличием являются лишь намагниченность ротора, позволяющая возбудить генератор даже без аккумуляторной батареи, и низкая цена.
Некоторые авторы при постройке ветрогенераторов пользуются свойством обратимости коллекторных электродвигателей — принудительно вращая их ротор, с него можно снимать постоянный ток. Статор двигателей подобного типа состоит либо из постоянных магнитов, что более предпочтительно в наших целях, либо имеет обмотку. Для применения двигателя в режиме генератора она подключается к автомобильному реле-регулятору, чтобы обеспечить нужное напряжение. Рассмотрим подключение реле-регулятора на примере узла от ВАЗовской классики (оно удобно тем, что не объединено в один блок с щеточным узлом):
- Одну из щеток двигателя соедините с корпусом — это будет отрицательный полюс генератора. Сюда же надежно подключите металлический корпус реле-регулятора и клемму «-» аккумулятора.
- Клемму 67 реле соедините с одним из выводов статорной обмотки, второй временно с корпусом.
- Клемму 15 соедините через выключатель с положительным полюсом аккумулятора (при этом на обмотку подастся ток возбуждения). Придайте ротору вращение в том же направлении, что будет обеспечивать винт ветроустановки, и подключите между свободной щеткой и корпусом вольтметр. Если на щетке обнаружится отрицательный потенциал, поменяйте местами соединения статора с реле-регулятором и массой.
Основной особенностью подключения генератора постоянного тока к аккумуляторной батарее является необходимость в разделении их полупроводниковым диодом, не дающим аккумулятору разряжаться на обмотку ротора при остановке генератора. В современных автомобильных генераторах эту функцию выполняет трехфазный диодный мост, и мы также можем его использовать, параллельно соединив его фазы для уменьшения падения напряжения на нем.
Наибольшую же мощность можно снять с генератора, ротор которого состоит из неодимовых магнитов. Распространены конструкции на основе автомобильной ступицы с тормозным диском, по краю которого закрепляются мощные магниты. На минимальном расстоянии от них располагается статор с однофазной или трехфазной обмоткой.
Такой генератор хорош многим: он возбуждается уже при низких оборотах даже при севшем аккумуляторе, не требует обслуживания щеточного узла. Но при этом его выходное напряжение невозможно отрегулировать, так как оно зависит только от частоты вращения. Домашняя электростанция с генератором на неодимовых магнитах потребует подключения его к дополнительному инвертору для обеспечения зарядки аккумуляторной батареи в большом диапазоне скоростей ветра. Также это устройство часто называется контроллером заряда батарей.
Существует несколько различных вариантов реализации контроллера в зависимости от конкретного решения конструкции генератора. Так как у подобных самоделок большой разброс параметров, приведенную схему стоит рассматривать как иллюстрацию общего принципа устройства контроллера, а не как обязательное решение.
Как видно, эта схема рассчитана на использование в качестве генератора коллекторного электродвигателя. Если же вы использовали самодельный генератор переменного тока, добавьте диодный мост на его выход.
Напряжение с генератора через контрольный узел, состоящий из вольтметра и амперметра, подается на вход двух импульсных стабилизаторов. Зарядку аккумулятора осуществляет блок 2, в то время как задача блока 1 — защита от ухода генератора в разнос при сильном ветре и малом потреблнеии тока нагрузкой: при превышении напряжением порога, задаваемого движком потенциометра R3, блок 1 начинает подавать напряжение на подключенный к его выходу мощный нагрузочный резистор, о чем сообщает загорающийся светодиод LED2.
Нагрузка, не требующая точной стабилизации напряжения (например, низковольтные лампы накаливания), подключаются в обход стабилизатора к выводу диода D2.
Расчет мультипликатора
Генераторная установка имеет наклонную токоскоростную характеристику: с ростом оборотов ротора увеличивается максимальная отдаваемая им мощность. Следовательно, чтобы обеспечить наибольшую эффективность тихоходного ветрогенератора, нам понадобится мультипликатор с большим коэффициентом повышения.
Для самодельной конструкции наиболее оптимальное решение — это ременной мультипликатор: он прост в изготовлении и требует минимума станочных работ. Коэффициент повышения оборотов у него будет равен отношению диаметра ведущего шкива, связанного с осью винта, к диаметру ведомого шкива генератора. При необходимости передаточное число будет легко скорректировать заменой одного из шкивов.
При проектировании мультипликатора нужно учитывать как средние обороты лопастного узла, так и токоскоростную характеристику генератора. Если мы используем серийный автомобильный генератор, то ее без труда можно найти в Интернете, с самодельными же конструкциями, скорее всего, придется идти методом проб и ошибок.
Для примера возьмем распространенный тракторный генератор, о котором уже писали выше.
Взяв расчетную мощность нашей ветроустановки в 90 ватт, найдем точку на графике, соответствующую выходу генератора на эту мощность. При номинальном напряжении 14 В нам потребуется токоотдача не менее 6,5 А — согласно графику, это произойдет при оборотах чуть выше 1000 об/мин. Пусть винт нашей конструкции вращается ветром со скоростью 60 об/мин (ветер средней силы). Значит, нам потребуется как минимум двадцатикратное соотношение диаметров шкивов — для 70-миллиметрового шкива генератора шкив ветряка должен будет иметь диаметр почти полтора метра, что неприемлемо. Это недвусмысленно намекает, насколько мала эффективность ветрогенераторов такого типа — без сложного многоступенчатого редуктора, который сам по себе приведет к большим потерям мощности, вывести автомобильный генератор на рабочий режим практически невозможно.
Для сравнения, посмотрим на характеристики генераторов, используемых в ветрогенераторах промышленного изготовления. Например, генератор на постоянных магнитах ГВУ1000, по конструкции аналогичный описанной выше самоделке из автомобильного тормозного диска, всего при 200 оборотах в минуту выдает мощность в 1 киловатт. С другой стороны, обратной стороной является его значительные вес (34 кг) и цена (почти 70 тысяч рублей).
Мачта
Она не только обеспечивает безопасность эксплуатации ветряка (нижняя точка круга, описываемого лопастями, должна быть не ближе 2 метров к земле), но и позволяет ему максимально эффективно использовать энергию ветра, поток которого вблизи от земли становится более турбулентным.
Большая высота приводит к низкой жесткости мачты ветрогенератора и делает ее прочностной расчет достаточно сложным не только для мастера-любителя, но и для инженера. Можно перечислить лишь основные моменты:
- Размещайте мачту возможно дальше от дома и деревьев, затеняющих воздушный поток. Кроме того, при сильном ветре возможно падение ветрогенератора на здание либо его повреждение деревьями;
- Оптимальная конструкция мачты — это ажурная сварная ферма наподобие вышек электропередач, но в изготовлении она сложна и дорога. Простейший, но достаточно эффективный вариант — это несколько параллельных труб диаметром 80-100 мм, сваренных короткими швами между собой и забетонированных на глубину не менее метра в земле. Конструкцию из одной трубы крайне желательно усилить тросовыми растяжками, которые также крепятся к залитым в бетон опорам.
- Для упрощения обслуживания ветряка его мачту можно сделать переломной: в этом случае при ослаблении растяжки, идущей в направлении перелома, мачту можно будет наклонить к земле.
Рассказ об очень простом ветрогенераторе из домашнего вентилятора
Дополнительное электрооборудование
Как уже было сказано выше, неотъемлемой частью ветряной электростанции является аккумулятор, берущий на себя питание потребителей. при его выборе нужно помнить, что чем больше его емкость, тем дольше он сможет поддерживать напряжение в сети, но при этом и дольше будет заряжаться. Приблизительное время работы можно определить как то время, за которое исчерпается половина емкости аккумулятора (после этого падение напряжения станет уже ощутимым, кроме того, глубокий разряд снижает ресурс свинцово-кислотных батарей).
Пример: Так, аккумулятор емкостью 65 А*ч условно сможет отдавать в нагрузку 30-35 ампер-часов энергии. Много это или мало? Обычная лампа освещения мощностью 60 ватт потребует, с учетом наличия инвертора, преобразующего 12 В постоянного тока в 220 В переменного и имеющего собственный КПД в пределах 70%, тока в 7 ампер — это чуть больше четырех часов работы. Восстанавливать же растраченную энергию наш ветряк с условной мощностью 90 ватт даже в лучшем случае, при постоянном сильном ветре, будет не менее пяти часов. Как вы видите, при использовании ветрогенератора исключительно как автономного источника энергии электричество в вашем доме будет доступным лишь на несколько часов в день.
Вторым узлом системы электроснабжения становится инвертор. В нашем случае можно использовать как готовый автомобильный, так и извлеченный из источника бесперебойного питания. В любом случае важно не перегружать его потреблением тока, учитывая, что реальная эксплуатационная мощность его в 1,2-1,5 раза меньше указываемой максимальной мощности.
Как вы можете видеть, привлекательность использования даровой энергии упирается во многочисленные ограничения, и даже единственный эффективный в средней полосе России вариант — ветрогенератор — неспособен обеспечивать длительную автономность.
Но вместе с тем эта идея неплоха и как источник аварийного электропитания и, особенно, как конструкторская задача — удовольствие от создания своими руками ветрогенераторной установки может в разы превосходить ее мощность.
Источник