Ли ион аккумулятор устройство

Литий-ионный аккумулятор: устройство, принцип работы, характеристики

Сложно представить себе жизнь современного человека без мобильного телефона, планшета, ноутбука, mp3 плеера, колонки и прочих переносных портативных гаджетов. Но вряд ли можно было бы представить себе их работу без качественного источника питания. Одним из наиболее распространенных вариантов для электроснабжения переносных устройств является литий-ионный аккумулятор. Как устроен и чем примечателен такой аккумулятор, мы рассмотрим в этой статье.

Устройство и принцип работы

Литий, как химический элемент давно известен способностью легко отдавать заряд за счет одного электрона расположенного на внешней орбите. Однако в соединениях литий стабилизируется, и его соли плохо вступают в реакцию. В Li-Ion аккумуляторах задача применения свойств этого химического элемента для питания электрических потребителей решается за счет конструктивных особенностей.

Рис. 1. Устройство литий-ионного аккумулятора

Конструктивно литий-ионный аккумулятор состоит из следующих частей:

  • Положительно заряженный электрод – выполняется из алюминиевой фольги. Как правило, он выполняется из трех слоев, первый из которых представляет собой алюминий, а другие два – это порошковые или гелиевые напыления. В состав покрытия включаются проводящие основы и углеродистые структуры.
  • Отрицательно заряженный электрод – композитный элемент изготавливаемый на основе медной фольги, которая покрывается наноструктурированными солями лития. Которые представлены соединениями лития с железом или кобальтом, их наносятся на медную поверхность посредством проводящего клея.
  • Электролит – предназначен для наполнения пространства между анодом и катодом. В ходе эксплуатации литий-ионного аккумулятора электролит пропускает положительные ионы лития, но являются непроходимым препятствием для отрицательно заряженных электронов. Как правило, жидкий электролит выполняется на основе литиевых солей.
  • Сепаратор или разделитель – применяется для отделения анода от катода, позволяет избежать необратимой химической реакции в случае внутреннего короткого замыкания пластин или при прорастании дендритов. Чаще всего выполняется из пористого листового полиэтилена, находящегося в слое электролита.
Читайте также:  Схема зарядного устройства аккумуляторов для машин

В соответствии с п.3.6 ГОСТ Р МЭК 62660-1-2014 под литий-ионным аккумулятором следует понимать такой аккумулятор, у которого при заряде от катода ионы лития переходят в анод, а в случае разряда через нагрузку перемещаются обратно. На этапе изготовления источника питания система положительного и отрицательного электрода находится в стабильном состоянии.

Рис. 2. Изначально система литий-ионного аккумулятора в стабильном состоянии

Как только к обкладкам будет приложено зарядное напряжение, под его воздействием начнется процесс выделения электронов из атомов лития, с образованием положительно заряженных ионов.

Рис. 3. Под воздействием зарядного напряжения из атомов выделятся электроны

Электроны начнут притягиваться к медному электроду, но не смогут проникнуть через толщу электролита. Поэтому элементарные заряженные частицы начнут перемещаться по замкнутой цепи.

Рис. 4. Электроны по замкнутой цепи перейдут от катода к аноду

В то время как положительно заряженные ионы лития смогут беспрепятственно проникнуть через электролит и перейдут в пористый графитовый слой. Таким образом, происходит накопление заряда в литий-ионном аккумуляторе, процесс продолжается до насыщения катодной зоны.

Рис. 5. Ионы лития переместятся через электролит

В итоге получается такое состояние литий-ионного аккумулятора, при котором отрицательный электрод обладает определенным зарядом, но его состояние крайне нестабильно. Скопившиеся под воздействием постороннего источника питания ионы лития и электроны уравновешивают друг друга.

Рис. 6. Заряженное состояние литий-ионного аккумулятора

Такой баланс заряда в литий-ионном аккумуляторе сохраняется до тех пор, пока к его выводам не подключат какую-либо нагрузку.

При подключении любого электрического прибора для электронов, расположенных в отрицательно заряженном электроде, появиться путь для перемещения в направлении катода.

Рис. 7. При подключении нагрузки электроны переместятся обратно к катоду

Электроны будут перемещаться по внешней электрической цепи, а положительно заряженные ионы лития пройдут сквозь электролит литий-ионного аккумулятора. Направленное движение отрицательно заряженных ионов и создает электрический ток. По мере перемещения заряженных частиц от отрицательного электрода к положительному, аккумулятор будет разряжаться, а для восстановления энергии, его потребуется подзарядить снова.

Характеристики

В эксплуатации литий-ионного аккумулятора опираются на его технические параметры. К основным характеристикам батарей данного типа относят:

  • Плотность энергии – измеряется в Вт*ч/кг, для литий-ионных аккумуляторов, чаще всего, находится в пределах от 90 до 120.
  • Удельная мощность – определяет количество энергии в единице веса, составляет порядка 1 – 1,8 кВт/кг.
  • Процент саморазряда – определяет количество растрачиваемой аккумулятором энергии за период времени. Для литий-ионных моделей составляет 2 – 3% в месяц. При условии нахождения батареи в комнатной температуре саморазряд составляет только 7% в год.
  • Допустимый диапазон температур – для литий-ионных аккумуляторов, чаще всего составляет от — 30 до +50°С, но в некоторых моделях может варьировать в пределах от – 60 до +70°С.
  • Число циклов – указывает количественное выражение для возможности разряда и последующего заряда до выхода литий-ионного аккумулятора со строя. В зависимости от модели и конструктивных особенностей составляет от 2 до 5тысяч циклов. А при 0,5 – 1 тысяче, как правило, теряется порядка 20% начальной емкости.
  • Минимальное и максимальное напряжение – для литий-ионных аккумуляторов наименьшая величина составляет в пределах 2,2 – 2,5В, а наибольшая составляет 4,25 – 4,35В.
  • Время заряда – при оптимальном режиме составляет около 2 – 4 часов.

Преимущества и недостатки

В последнее время литий-ионные аккумуляторы заняли свою весомую нишу в сфере независимых источников питания и продолжают вытеснять другие модели. Такой успех объясняется рядом весомых преимуществ:

  • Обладают высокой энергетической плотностью, в сравнении с щелочными, кислотными, никель-кадмиевыми и никель-металлогидридными.
  • В сравнении с другими видами, один элемент характеризуется куда большей величиной напряжения, которую тот способен выдать.
  • Характеризуются довольно большим количеством циклов заряда и разряда, благодаря чему могут похвастаться более длительным сроком эксплуатации.
  • Может функционировать в достаточно широком температурном диапазоне.
  • В сравнении с другими типами аккумуляторов, не содержит веществ, представляющих угрозу экологии.

Однако, на ряду с преимуществами, литий-ионные аккумуляторы характеризуются и некоторыми недостатками. Так, в случае несоблюдения основных режимов заряда или эксплуатации батарея может не только выйти со строя, но и загореться. В случае понижения температуры менее допустимого предела, емкость аккумулятора может снизиться до 20%. При избыточном заряде литий-ионный быстро выходит со строя.

Особенности эксплуатации

В случае неправильной эксплуатации литий-ионные аккумулятор быстро выходят со строя. Как могли заметить некоторые владельцы мобильных телефонов, такая батарея часто вздувается, что мешает нормальному закрытию крышки.

Рис. 8. Вздутие литий-ионной батареи

Подобная ситуация является следствием выделения большого количества газов, которые и раздувают корпус Li-Ion батареи. В то же время, при правильной эксплуатации, источник питания прослужит в 10 раз дольше.

Одним из важнейших правил для литий-ионных источников питания является соблюдение умеренного температурного режима. Не допускается как чрезмерный перегрев, к примеру, оставлять моблиьный телефон на пляже под воздействием прямых солнечных лучей, возле обогревателей или в автомобиле на палящем солнце. В равной степени, как и резкие переохлаждения. В случае выявления чрезмерного нагрева в ходе заряда, необходимо прекратить процедуру и вынуть литий-ионную батарею для охлаждения.

В случае выявления испорченной и уже вздутой батареи, ни в коем случае не следует пытаться ее проколоть или отремонтировать. Лучше замените е на новую в целях собственной безопасности, но внимательно следите за соблюдением основных режимов и правильным зарядом.

Особенности зарядки

От правильного заряда зависит продолжительность работы литий-ионного аккумулятора и величина емкости, в сравнении с заводскими характеристиками. Так, следует отметить следующие особенности:

  • Не стоит допускать полного разряда – хоть это и не однозначное утверждение, но постоянное использование накопленной в аккумуляторе электроэнергии на 100% очень быстро приведет к изнашиванию элементов. Но, здесь существует небольшая оговорка, один раз в три месяца, такую процедуру необходимо выполнять для сохранения верхнего и нижнего предела.
  • Литий-ионные аккумуляторы обладают пусть и незначительным, но эффектом памяти. Поэтому заряжать их лучше полностью, так как постоянный недостаток заряда будет снижать емкость.
  • Несмотря на наличие защиты от перезаряда практически во всех литий-ионных батареях, не стоит заряжать их более, чем предусмотрено заводом изготовителем.
  • Для заряда обязательно используйте оригинальные блоки питания, так как применение нетиповых устройств может отрицательно сказаться на сроке службы литий-ионных аккумуляторов.

Источник

Как устроен Li-Ion аккумулятор?

Автономную работу всевозможных устройств,отмобильных гаджетов до персонального электротранспорта, обеспечивают аккумуляторы. С учетом необходимых значений емкости и напряжения, они объединяются в аккумуляторные батареи. Ключевые характеристики АКБ – емкость, напряжение, масса, время восполнения заряда, допустимый температурный режим – зависят от типа используемой химии.

Для автономного питания современной техники успешно используются литий-ионные аккумуляторы. Они имеют большой циклический ресурс, малый саморазряд, широкий температурный диапазон и солидную удельную емкость. Катод у таких элементов выполнен из производных лития, а заряд переносят ионы Li. Далее мы подробнее рассмотрим устройство Li-ion аккумуляторов и принцип их работы.

Как устроена литий-ионная батарея?

В основе конструкции литий-ионного аккумулятора– 2 составляющие: анод, выполненный из пористого углерода на фольге из меди, и катод – из оксида лития на фольге из алюминия. Их разделяет пористый сепаратор из полипропилена, обильно пропитанный электролитом, который выполняет функции проводника. Система находится в герметичном корпусе. Электроды подключены к токосъемникам. Некоторые аккумуляторы дополнительно имеют клапан-предохранитель для сброса внутреннего давления.

Пластины из меди и алюминия, смазанные электролитом и разделенные пористой прослойкой, обычно сворачиваются в рулон. В итоге получается элемент цилиндрической формы. При другом способе укладки пластин получаются изделия в форме призм и пакетов. Состав катода бывает разным: LiMn2O4, LiFePO4, LiCoO2,LiMnO2, LiMnRON, LiC6, LiNiO2и т.д.

Типы Li-ionаккумуляторов

В зависимости от используемого материала катода литиевые элементы бывают:

  1. Литий-марганцевые (LiMn2O4, LNO). Имеют меньшее внутреннее сопротивление, высокую мощность и умеренную емкость – 100–150 Вт·ч/кг. Стандартные токи заряда и разряда – до 1С, но есть модели с С-рейтингом зарядки до 3С и С-рейтингом разряда до 10С, а в импульсном режиме – до 50С. Ресурс – около 500 циклов. Применяются такие накопители в электроинструменте, силовых агрегатах, медицинском оборудовании.
  2. Литий-кобальтовые (LiCoO2, LCO). Имеют высокую энергоемкость (150–200 Вт·ч/кг), но уступают аналогам по термической стабильности и сроку службы (500–1000 циклов). Токи заряда и разряда для таких элементов не должны превышать 1С. Накопители энергии на основе кобальта встречаются все реже, но еще используются в мобильных телефонах, цифровых камерах, ноутбуках.
  3. Литий-никель-марганец-кобальт-оксидные (NMC, NCM). Обеспечивают высокую мощность и емкость – 150–220 Вт·ч/кг, выдерживают 1000–2000 циклов. Стандартные токи заряда и разряда – 1С. Используются в медицинском и промышленном оборудовании, электровелосипедах и других видах электротранспорта.
  4. Литий-никель-кобальт-алюминий-оксидные (NCA). Отличаются высокой удельной энергоемкостью – 200–260 Вт·ч/кг. Имеют ресурс около 500 циклов, зарядные токи 0,7С и разрядные 1С. Обеспечивают автономное питание промышленного и медицинского оборудования, электрических силовых агрегатов и других устройств, требующих высокой емкости.
  5. Литий-железо-фосфатные (LFP, LiFePO4). Отличаются большим ресурсом (более 2000 циклов), термической и химической стабильностью, высокой безопасностью эксплуатации и малым внутренним сопротивлением. Их удельная энергоемкость составляет 90–120 Вт·ч/кг, ток зарядки – 1С, ток разрядки – до 25С. Используются такие элементы питания в устройствах, для которых важна выносливость аккумов, способность работать на морозе и выдерживать высокие токи нагрузки.
  6. Литий-титанатные (LiTi). Отличаются низким номинальным напряжением (2,4 В) и удельной энергоемкостью 70–80 Вт·ч/кг, но быстро заряжаются, имеют широкий температурный диапазон и ресурс 3000–7000 циклов. Номинальные токи зарядки 1С, максимум – 5С. Допустимые разрядные токи – 10С, а при импульсной подзарядке – 30С. Литий-титанатные элементы считаются самыми безопасными. Используются они в уличном освещении, ИБП, электротранспорте.

Как работает литиевый аккумулятор?

Принцип работы Li-ion аккумуляторов идентичен для элементов всех типов, независимо от материала катода.Когда на электроды подается напряжение – «плюс» на оксид лития и «минус» на графит – положительно заряженные ионы лития отцепляются от молекул оксида и переходят на углеродную пластинку. В результате протекает окислительная реакция, и аккумулятор заряжается.

При работе литиевого аккумулятора под нагрузкой протекает обратный процесс. Ионы Li + возвращаются на пластинку из оксида лития, в свое стандартное состояние. Графитовая пластинка на фольге из меди становится «минусом», а оксид лития на фольге из алюминия – «плюсом».

Особенности зарядкиLi-ionэлементов

Литий-ионные элементы питания чувствительны к перезаряду. На поверхности анода при чрезмерном заряде осаждается металлический литий. Он выглядит как мелкий мшистый осадок и способен вступать в реакцию с электролитом. На катоде при перезаряде активно выделяется кислород. Внешне это может проявляться в виде интенсивного нагрева, роста давления и разгерметизации элемента.

Заряжаются Li-ionаккумуляторы в 2 этапа:

  1. При стабильном значении тока 0,2С–1С до рекомендованного производителем напряжения, обычно – 4,1–4,2 В. Длится эта стадия около 40 минут.
  2. При неизменном напряжении. Процесс зарядки завершается, когда значение зарядного тока уменьшается до величины, составляющей 3% от начального значения.

Быстрее происходит зарядка в импульсном режиме.Но для продления срока службы литиевых элементов их рекомендуется заряжать током, номинал которого составляет 50% от значения емкости, т.е. 0,5С.

Защита литиевых аккумуляторов

Элементы питания на основе лития защищены от коротких замыканийвнутри системы, например, с помощью 2-слойного сепаратора. Один из его слоев выполняется не из полипропилена, а из аналога полиэтилена. При риске короткого замыкания, к примеру, если дендриты лития прорастают к катоду, защитный слой локально нагревается, частично плавится, становится непроницаемым и блокирует последующее прорастание дендритов.

Для защиты от избыточного заряда и глубокого разряда накопители энергии снабжаются специальными ограничителями – платами защиты по току и напряжению. Они не допускают выхода напряжения за границы рекомендованного диапазона и в критических ситуациях автоматически отключают элемент от питания или нагрузки.

Поэтому для безопасной работы элементов и аккумуляторных батарей важно использовать BMSплаты. В противном случае высок риск повреждения аккумуляторов и их преждевременного выхода из строя. Такой контроллер зарядно-разрядного процесса может устанавливаться и на отдельные аккумуляторы, и на собранную из них батарею.

Производство литиевых элементов питания

Сырье для основных элементов в схеме Li-ion аккумуляторов – катода и анода – имеет вид мелкофракционного черного порошка. Чем мельче частицы, тем больше получается эффективная площадь электродов. Оптимальная форма частиц – сферическая, с гладкими краями, т.к. неровности чувствительны к токовым нагрузкам.

Производственный процесс состоит из следующих этапов:

  1. Порошковидные материалы наносятся в виде суспензии на фольгу. Аноды и катоды обычно производятся в различных цехах, чтобы обеспечить максимальную чистоту материалов. Металлическая фольга играет роль токоприемника.
  2. Фольга с нанесенными материалами сушится, разделяется на полоски и складывается в несколько слоев. Процесс сворачивания строго контролируется, т.к. любые дефекты способны привести к коротким замыканиям внутри системы.
  3. Между пластинами анода и катода зажимается сепаратор, обработанный электролитом.
  4. Пластинки сворачиваются рулоном или по другой схеме и помещаются в корпус.

Готовые изделия проходят тестирование – контролируемый цикл заряда-разряда. Подзарядку начинают с минимального напряжения и с постепенным его повышением.Протестированные изделия заряжаются до оптимального уровня, чтобы исключить риск значительного падения напряжения из-за саморазряда, и поставляются в продажу.

Предыдущая статья нашего блога посвящена сигнализации для электровелосипедов.

Источник

Оцените статью