Красители для солнечных батарей

Энергоэффективный дом

Селективное покрытие своими руками для солнечного коллектора

Самодельный солнечный коллектор это едва-ли не самая интересная тема в контексте энергоэффективного дома. Для изготовления солнечного коллектора не требуется высокотехнологичного производства и если разобраться в теории и не бояться практики — можно обеспечить семью горячей водой, подогретой солнцем.

Изготовление коллектора проходит в несколько этапов, один из которых — выбор и нанесение селективного покрытия на поглощающие панели (абсорберы). Отмечу, что затраты на селективное покрытие незначительно увеличивают общую стоимость проекта, но играют важную роль.

Абсорберу (поглощающей панели) нужно покрытие, которое будет эффективным теплоприемником, прозрачно для инфракрасного излучения.

На какие характеристики селективных покрытий нужно ориентироваться?

Мерилом эффективности селективного покрытия является:

  • Коэффициент поглощения солнечной энергии(α)
  • Относительная излучающая способность (ε)
  • Отношение способности поглощения к излучению

Начнем с самого простого и доступного селективного покрытия: краски.

Селективная краска

Обычные черные краски не годятся, так как являются теплоизоляторами и не обладают термостойкостью. Матовая автокраска не обладает необходимой термостойкостью, хотя светопоглощение у них хорошее (в испытаниях дают 65-70°С при 70-80°С у коллектора с покрытием тонером по лаку).

Лаки, посыпанные тонером для лазерных принтеров, дают правильное покрытие с точки зрения матовой поверхности, но так же плохо проводят тепло. Смешивать лак и тех. углерод — идея еще хуже, так как получается очень толстый слой покрытия с глянцем. Нам нужно добиться толщины селективного покрытия в несколько микрон.

Подходят аэрозольные и баночные термостойкие матовые краски для мангалов, печей, каминов черного цвета. Под некоторые краски требуется нанесение специального антикоррозийного грунта, кислотного грунта.

Есть подходящие краски не в форме аэрозоля, но которые можно наносить краскопультом. Напоминаю, толщина слоя очень важна для эффективности селективного покрытия.

Нашел в продаже специализированные краски для солнечных коллекторов с заявленными 99% поглощения.

Готовая селективная пленка или металлическая лента

Селективными пленками пользуются мелкие производители коллекторов. Это термопленки для наклеивания на абсорбер или рулонная медь/алюминий с готовым селективным покрытием, нанесенным в условиях вакуума. Достать такой материал в розницу сложно.

Селективное покрытие на алюминий

Идеального тонкого покрытия графитового цвета на алюминии добиваются тем же методом, что и с оцинковкой — чернение купоросом/хлоридом натрия. Это спорный вариант самодельного селективного слоя, так как истончает металл.

Промышленные доступные абсорберы в основном алюминиевые, толщиной 0,2 мм, крашеные матовой термокраской. Учитывая это, мудрить с чернением алюминия всяким хлорным железом и анодированием не имеет смысла в масштабах самодельного солнечного коллектора. Наиболее быстро окупаемым в самоделках является именно крашеный алюминий, который уступает в теплоотдаче и только черненой меди. Но у алюминиевого абсорбера есть свои недостатки.

Селективное покрытие на медный абсорбер

Перед оксидированием медную поверхность нужно тщательно очистить кислотой (горячий уксус, лимонная кислота, сульфаминовая кислота). Шкурить перед чернением щетками по металлу или какими-либо абразивами не дает никаких преимуществ в абсорбции энергии в дальнейшем.

Очистить медь можно солью/содой по чайной ложке на 100 г. воды.

Прочную оксидную пленку можно получить температурой красного каления — 1200°С с последующим охлаждением. Делать такое оксидирование нужно до момента спайки. В домашних «каминных» условиях такое не провернуть, нужно нести медь к кузнецу.

Оксидирование меди серной мазью дает рыхлое неустойчивое селективное покрытие.
Естественная окись меди имеет поглощающую способность в четыре раза большую, чем у термостойкой краски: 75% поглощения, 33% эмиссии, что дает 42% эффективности.

Чернение меди делают также электролитическим способом, рецепты и технологический процесс есть в сети.

Жидкости для воронения (чернения) хорошо работают, но дорогие. Протравки можно делать самостоятельно, рецепты есть по этой ссылке. Хочу отдельно остановиться на паре способов. В способе с серной печенью — оксид меди в составе полученного покрытия может быть в меньшей концентрации, чем сульфид меди, а это может влиять на селективную способность покрытия, но я не химик и не уверен.

Промышленный метод оксидирования меди с помощью едкого натра опасен для здоровья, не применяйте его в гаражных условиях. Вместо NaOH+NaClO2 пользуются содой, которая в промышленных масштабах неудобна и дорога для чернения меди.

Хотя образцы, черненные NaOH показывают лучший результат (подробнее о тестах самодельных селективных покрытий на меди и алюминии здесь) чернение содой — процесс медленный, на глубокий черный цвет уходит около 2-х суток в растворе без подогрева. Концентрация раствора: 2 чайные ложки на 100 грамм воды.

Формирование оксида проходит медленно, поэтому нужный оттенок и равномерность получить гораздо проще таким методом. Раствор нужно периодически помешивать а детали переворачивать.

Солнечный свет ускоряет процесс оксидирования меди. Толщина покрытия в несколько микрон, что нам и нужно. Очень стабильное, не смывается и не сцарапывается.

Встречал советы с парами аммиака (нашатырного спирта), якобы приводят к быстрому потемнению меди в закрытой емкости. Однако это скорее патинирование, придающее меди синеву, нестойкое покрытие.

Прожиг меди газовой горелкой дает на 10-12°С меньше селективности, чем оксидирование химическими способами.

Для коллектора лучше выбрать медь. Простая пайка, долговечность работы даже при утрате селективного покрытия (с алюминием все в разы сложнее), хотя медь и получится раза в 4 дороже алюминия.

Термокраска на медь тоже наносится, но раз уж вы теперь знаете, как ее оксидировать, то браться за покраску точно не стоит.

Селективное покрытие на оцинковку

Химическое меднение (и последующее оксидирование) оцинковки можно провести в гаражных условиях с помощью пентагидрата сульфата меди (медного купороса).

Химическое чернение раствором медного купороса и натриевой соли соляной кислоты (хлорид натрия) получается не стойким. Чернить оцинковку лучше готовым промышленным чернителем, с которым можно работать без гальваники холодным способом, он создает на поверхности прочную оксидную хроматную пленку. Оксидный слой поглощает максимум излучения в пасмурный день.

Вариант нанесения на оцинковку порошковой краски для лазерных принтеров (технического углерода) не менее популярен. Пластины оцинковки прогреваются строительным феном и посыпаются тонером. Слой краски получается тонким, матовым, прочным — порошок приплавляется к металлу сам. Если пластина слишком горячая и порошок оплавился — обрабатывают мелкозернистой наждачной бумагой. В солнечную погоду такое селективное покрытие более чем эффективно.

Другие технологии селективных покрытий:

  • Гофрированная селективная поверхность
  • Углеродный войлок
  • Селективное бархатное (флок) покрытие, нанесенное плазмой

Несколько обобщающих моментов о селективных поглощающих покрытиях:

  1. Коллекторы для сезонного пользования прекрасно греют воду с любым самодельным селективным покрытием.
  2. Абсорбер с матовым черным покрытием и двумя стеклами поверх имеет примерно те же температуры, что и теплоприемник с селективной краской и одним стеклом.
  3. Чернение меди гораздо долговечнее красок, а стоимость оксидирования не дороже покрытия термостойкой краской. Красить медь не стоит.
  4. Быстрее всех окупается крашеный алюминиевый абсорбер.

Книги по солнечным коллекторам:

Дмитрий Тенешев «Сделай сам солнечный коллектор из полимеров»
Н. В. Харченко «Индивидуальные солнечные установки»

Целый архив документации по технологии производства селективных покрытий скачивайте тут (ссылка на яндекс.диск)

Источник

Солнечная краска — «зеленое» электричество в каждый дом

Напыляемые солнечные элементы – “почти газетная” печать от специалистов Техасского Университета

«На данный момент наша исследовательская группа занимается изготовлением нанокристаллов. Мы берем элементы группы ‘CIGS’ – медь, индий, галлий, селенид – и формируем из этих неорганических [светопоглощающих] материалов мелкие частицы, которые затем помещаются в растворитель, создавая таким образом чернила или краску», — поясняет Коргел. Эта солнечная «краска» выполняет те же функции, что и громоздкие фотогальванические солнечные коллекторы на крышах зданий и на «солнечных фермах» по всему миру. Крошечные коллекторы Коргел называет «солнечными бутербродами», верхняя и нижняя части которых представлены металлическими контактами, а середина – светопоглощающим слоем.

«Солнечная краска» может распыляться на пластиковые, стеклянные и тканевые поверхности, превращая их в солнечные элементы. Процесс этот чем-то напоминает газетную печать. Подложка может быть слегка гибкой (к примеру, представлять собой ровный лист пластика, металлической фольги или даже лист бумаги). Толщина слоя используемых в краске CIGS наночастиц, к слову, в 10000 раз меньше человеческого волоса.

Отдельные элементы могут собираться в солнечные панели (согласно NREL — по 40 элементов на одну панель), обеспечивая электричеством жилые дома и промышленные предприятия. Единственное «но» заключается в том, что для рентабельности промышленного изготовления «краски» эффективность преобразования солнечного света должна составить 10%. Пока что это значение не превышает 3%, но исследователи надеются, что им удастся повысить его до необходимого уровня.

Напыляемые солнечные элементы – «зеленое» электричество для микроскопических устройств

Исследователи Университета Южной Флориды разработали столь крошечные солнечные элементы, что их можно просто распылять на стены, крыши и любые другие освещаемые солнцем поверхности. Эти элементы способны питать только очень мелкие устройства, так как их размеры не превышают 1мм в длину. Органические полимеры, используемые вместо кремния, позволили д-ру Цзян Сяомэй создать легкорастворимые фотоэлементы, которые могут наноситься на любой приспособленный для этого материал. Комплекс из 20 таких элементов производит электроэнергию напряжением 8 вольт, которую исследователи использовали для работы датчиков из нанотрубок, предназначенных для обнаружения опасных химикатов.

Кроме того, американская компания New Energy Technologies недавно представила протестированную Университетом Южной Флориды разработку «Солнечных окон» (“SolarWindow”). Эта напыленная на стеклянную поверхность солнечная панель, по утверждению разработчиков, способна производить электроэнергию даже из искусственного света внутри помещений. Для ее создания использовались все те же крошечные солнечные элементы, разработанные Цзян Сяомэй.

Завод по производству напыляемых солнечных элементов в Австралии

Исследователи Австралийского национального университета совместно с представителями компаний Spark Solar Australia и Braggone Oy работают над трехлетним проектом по разработке дешевых и высокоэффективных напыляемых солнечных панелей. Традиционно фотоэлементы изготавливаются из кремния, покрытого тонким противоотражающим слоем нитрата кремния. Дороговизна их производства объясняется, в частности, необходимостью проведения процесса в условиях вакуума. Новый метод использует напыляемую водородную пленку и напыляемую же противоотражающую пленку (вакуум при этом не нужен). Солнечные элементы проходят через конвейер, где и происходит напыление пленок. Этот упрощенный метод позволит средних размеров заводу сэкономить на капитальном оборудовании до $ 5 млн., т.е. выпускаемые солнечные панели окажутся в итоге намного более дешевыми.

Основанный Spark Solar «солнечный» завод станет самым крупным поставщиком солнечных элементов в Южном полушарии. Будущее месторасположение его все еще уточняется (рассматриваются варианты Аделаиды, Джилонга, Воллонгонга, Квенбейана, и Канберры). Первые солнечные элементы были выпущены уже в конце 2010 года, в целом же предполагаемый годичный объем производимой продукции составит более 10 миллионов фотоэлементов, при этом доходы от экспорта ожидаются на уровне 135 млн. австралийских долларов в год.

Напыляемые солнечные элементы – новые возможности для окон эко-домов

Норвежская компания EnSol AS совместно с командой ученых Лестерского университета разработала запатентованную конструкцию солнечного элемента, в которой используются металлические частицы диаметром около 10 нанометров. Это свое изобретение ученые планируют использовать для превращения в солнечные электрогенераторы самолетов и зданий (в том числе окон). Наносить «краску» из новых тонкопленочных фотоэлементов можно будет на любую плоскую поверхность.

Предлагаемая технология была опробована, но все еще дорабатывается. Прежде чем выпустить ее на рынок в к 2016 году, разработчики надеются повысить эффективность изобретения до 20%. Так или иначе, покрытый тонкой прозрачной пленкой фотоэлементов материал от EnSol уже показал себя лучше, чем многие из существующих и параллельно разрабатываемых конкурентами технологий.

Итак, подводя итоги

Тот факт, что «солнечный» материал может использоваться в виде напыляемой краски, существенно расширяет возможности создания «мобильного» электричества.

Небо, затянутое тучами, работе «солнечной краске» не помеха, так как напыляемые фотоэлементы способны улавливать не только ультрафиолет, но и инфракрасное солнечное излучение.

Покрытие транспортного средства подобным материалом сможет, теоретически, обеспечить постоянную подзарядку батарей.

Еще больше электроэнергии будет вырабатываться при нанесении его на поверхность крыш и/или окон. Кроме того, подобные солнечные элементы будут лучше выдерживать непогоду, чем большинство нынешних хрупких солнечных коллекторов.

Однако

Поскольку эффективность фотоэлементов зависит от степени поглощения солнечного света, пользователям придется периодически очищать «покрашенные» солнечной «краской» стены и крыши. Работы Австралийского национального университета, касающиеся возможности использования напяемых солнечных панелей в помещении, продолжаются, завершение их запланировано на конец 2011 года.

Остается открытым вопрос эффективности затрат (исследования в данном направлении стоят недешево).

И наконец, последнее ограничение связано с сырьем – комбинация медь-индий-галлий-селенид стоит дорого и не является широкодоступной.

Так или иначе, у исследователей остается широкое поле для исследований и экспериментов. А у нас – надежда увидеть и приобрести когда-нибудь кажущуюся пока невероятной «солнечную краску».

Источник

Читайте также:  Солнечные батареи для сварочных масок
Оцените статью