- КПД солнечной батареи – что это?
- КПД солнечных батарей — обзор самых эффективных модулей
- КПД у разных типов солнечных панелей
- Новый мировой рекорд: эффективность солнечных батарей повысили до 29,15%
- Виды солнечных фотоэлементов и их КПД
- От чего зависит эффективность?
- Срок службы и окупаемость
- Самые эффективные солнечные батареи
- Исследования и разработки для повышения КПД
- Видео-инструкция по сборке своими руками
- КПД солнечных батарей – от чего зависит, работа в пасмурную погоду
- Показатель КПД солнечных панелей
- От чего зависит КПД
- Как увеличить КПД панелей
- Максимальные показатели КПД
КПД солнечной батареи – что это?
Всем прекрасно известно, что чем больше коэффициент полезного действия, тем лучше. Это правило распространяется и на КПД солнечных батарей. Благодаря новым технологиям и способам производства КПД фотоэлементов постоянно растет, правда очень медленно, но главное — прогресс не стоит на месте.
Ниже приведен график достижений эффективности разных производителей, с течением времени. Начиная с середины и до самого верха — полупроводники разрабатывались для новых рекордов и космических задач, стоимость соответствующая. Все что ниже уже доступно и реально приобрести в наше время.
Всем известно про КПД, но мало кто понимает откуда берутся эти значения в процентах и как они рассчитываются. Давайте попробуем разобраться.
Как правило, завод изготовитель указывает эффективность своих собранных модулей и эффективность отдельных солнечных элементов, из которых состоит солнечная батарея. Эти параметры, как и другие характеристики, указываются при так называемых стандартных условиях — STS, основными из них является инсоляция 1000Вт/м² и температура элементов 25°С при которых и снимаются технические характеристики, в том числе и эффективность.
В настоящее время добросовестные изготовители стали тестировать каждую произведенную ими солнечную батареи после сборки и делать распечатку индивидуальных параметров, которую вкладывают к каждой батарее. Делается это для подтверждения качества своих изделий.
Ниже приведена распечатка одной из солнечных батарей SY-100 от Suoyang energy:
Каждый модуль имеет свои индивидуальные характеристики. Если взять две одинаковые панели одной модели они все равно будут иметь немного разные параметры.
Солнечные батареи данного производителя имеют положительную толерантность, в итоге мы имеем 104,617 Вт и эффективность 15,74% (отдельный элемент 18,7%). Как он получил это значение?
Формула расчета эффективности солнечных батарей выглядит следующим образом:
КПД = Pсб/Sсб/10, где:
Pсб – мощность СБ;
Sсб – площадь СБ.
Подставим значения в формулу:
КПД = 104,617/(1,2*0,554)/10 = 15,74%
Все сходится, но возникает еще один вопрос: почему тогда КПД отдельных фотоэлементов выше? Ответ прост – все дело в том, что солнечная батарея состоит из множества фотоэлементов и между ними есть небольшое расстояние, которое не используется для выработки энергии, плюс алюминиевая рама тоже «занимает место», соответственно площадь увеличивается, а КПД при этом снижается.
Ниже приведены фотографии и видео некоторых попыток получения большей эффективности фотоэлементов, с помощью создания элементов сложной формы, принудительного охлаждения солнечных элементов и фокусирования света с помощью линз. Возможно новинки хорошо покажут себя, их пустят в массовое производство, и они станут доступными для нас с вами.
Это гибридная солнечная батарея Vitru, в борьбе за эффективность производитель борется с нагревом элементов. Вода в колбе охлаждает элементы, в следствие чего не снижается напряжение и не падает мощность.
Новинка пока не продается и находится в стадии тестирования, но как заявляет V3Solar, весь секрет в конусной форме и вращения конструкции, благодаря этому ячейки не успевают нагреваться и КПД не снижается в течении всего дня.
Видео наглядно демонстрирует в чем заключается смысл задумки:
В отличие от предыдущих идей, борющимися с повышением температуры, эта конструкция в виде шара от Beta Torics, достигает производительности 35% благодаря концентрированному солнечному свету.
Источник
КПД солнечных батарей — обзор самых эффективных модулей
Обновлено: 7 января 2021
КПД у разных типов солнечных панелей
Существует несколько разновидностей солнечных модулей, которые изготавливаются по собственным технологиям и обладают определенными параметрами. КПД солнечных панелей определяет их способность преобразовать солнечную энергию в электрический ток. Расчет производится путем деления мощности энергии, вырабатываемой панелью, на мощность потока света, падающего на рабочую поверхность.
Показатели панелей изначально определялись при стандартных лабораторных условиях (STS):
- уровень инсоляции — 1000 вт/ м2
- температура — 25°
Большинство современных производителей производят тестирование каждой собранной батареи и прилагают результаты к документации при продаже. Это дает более полную и корректную информацию о каждой панели, поскольку в процессе изготовления возможны некоторые отклонения от технологических нормативов. Поэтому сравнение любых двух (или более) панелей всегда выявляет небольшое расхождение демонстрируемых параметров.
Практически любые отклонения в первую очередь отражаются на эффективности, т. е. на КПД солнечной батареи. Из-за этого все разновидности не имеют четко определенного значения. Обычно указывают довольно широкий диапазон, который может давать заметную разницу параметров солнечных модулей, изготовленных по одинаковой технологии.
Все виды фотоэлементов обладают определенными свойствами, определяющими эффективность солнечных батарей. Каждая разновидность имеет свои пределы возможностей, обусловленные строением и составом полупроводников.
Новый мировой рекорд: эффективность солнечных батарей повысили до 29,15%
Научно-исследовательская группа Helmholtz-Zentrum Berlin (HZB) описала в журнале Science разработку тандемного солнечного элемента из перовскита и кремния. Его КПД составил 29,15%. На текущий момент — это новый мировой рекорд. Предыдущие показатели КПД были в районе 28%. Исследователи планируют довести эффективность тандемного солнечного элемента до 30% и даже превысить этот показатель.
Для солнечных элементов базовым материалом является кремний, а разработки с использованием перовскита (титаната кальция) ведутся параллельно. Ученые думают, что возможности перовскита еще не раскрыты и используя оба материала, они получают прирост эффективности.
Солнечные элементы, состоящие из двух полупроводников с различной шириной запрещенной зоны, способны демонстрировать высокую эффективность по сравнению с отдельными элементами, так как тандемные элементы полнее используют солнечный спектр. В частности, обычные кремниевые солнечные элементы главным образом эффективно преобразуют в электрическую энергию инфракрасную часть солнечного спектра, в то время как соединения перовскита могут эффективно преобразовывать видимую часть спектра, повышая КРД тандема.
Использование перовскита и кремния не увеличивает стоимость солнечных панелей.
Виды солнечных фотоэлементов и их КПД
Существуют разные виды солнечных батарей:
- кремниевые
- теллур-кадмиевые
- из арсенида галлия
- из селенида индия
- полимерные
- органические
- комбинированные, многослойные
Самые эффективные солнечные панели из тех, что находятся в серийном производстве — кремниевые.
Их выпускают в двух видах:
- монокристаллические. Изготавливаются из тонких пластинок, срезанных с цельного (монолитного) кристалла кремния. Считается, что это — лучшие солнечные панели, демонстрирующие КПД от 17 до 22 %
- поликристаллические. Заготовкой для этих элементов является брикет кремния, который был расплавлен и разлит по формам. Такие панели обладают немного сниженными показателями по всем позициям, чем монокристаллические. Их КПД находится в диапазоне 12-17 %
Есть еще одни современные солнечные батареи с высоким КПД — это панели на основе селенид-индия. Они способны выдать КПД 15-20 %. Несколько меньшими качествами обладают элементы из теллурида кадмия — не более 10-12 %.
Остальные виды значительно уступают лидерам — аморфные и полимерные элементы демонстрируют КПД не более 5-6 %. Необходимо учитывать, что приведенные показатели — усредненные. У разных производителей есть образцы, превышающие обычные нормы эффективности. Это не меняет общей картины, но демонстрирует необходимость совершенствования технологий, разработки новых методов производства фотоэлементов.
От чего зависит эффективность?
КПД солнечных фотоэлектрических установок составляет лишь малую часть от теоретически возможных показателей. Расчетный КПД доходит до 80-87 %, но изъяны технологии, недостаточная чистота материалов и неточность сборки элементов существенно снижают эти значения. Основная проблема кремниевых элементов заключается в способности поглощать лучи только инфракрасного спектра, а энергия ультрафиолетовых участков остается неиспользованной.
Проблема состоит в дороговизне процессов очистки, выращивания кристаллов и прочих тонких процедур, без которых ожидаемого эффекта не удастся добиться. Все солнечные панели с высоким КПД отличаются высокой стоимостью, что делает их недоступными для массового пользователя.
Необходимо учитывать также погодные и климатические условия. Самая производительная система не сможет демонстрировать высокие результаты, если источник энергии скрыт за тучами, или находится низко над горизонтом. Этот фактор не подлежит регулированию, единственным способом борьбы с ним может стать повышенная эффективность солнечных панелей.
Некоторые разновидности фотоэлементов способны вполне стабильно вырабатывать энергию в пасмурную погоду, например, тонкопленочные виды. Однако, их производительность невысока и не дает нужного количества энергии. Чем выше КПД батарей, тем сильнее падает количество вырабатываемой энергии при появлении облачности.
Ежегодно появляются заявления от различных компаний или групп ученых о разработке высокоэффективных образцов солнечных панелей, стабильно работающих в сложных условиях. Однако, в продаже до сих пор есть только привычные кремниевые или пленочные разновидности, а новинок не видно. Причиной этого является слишком высокая себестоимость производства и нестабильность результатов технологий, вынуждающие изготовителей пока отказываться от недоработанных новшеств.
Срок службы и окупаемость
Большинство солнечных панелей способны работать по 25 лет и более. Однако, первоначальные характеристики со временем ухудшаются, происходит падение производительности и, как следствие, уменьшение КПД. Факторы, влияющие не длительность эксплуатации фотоэлементов:
- тип конструкции. Чем выше изначальная производительность, тем более высокие результаты панель будет показывать после многолетней службы
- условия эксплуатации. В регионах с сильными среднесуточными и среднегодовыми перепадами температур ресурс панелей быстро уменьшается. Происходит физический износ полупроводников, нарушается прочность соединения слоев, образующих p-n переход. Все эти факторы отрицательно влияют на КПД солнечных модулей
Окупаемость панелей в первую очередь зависит от инсоляции — количества солнечной энергии, доступной фотоэлементам. Здесь необходимо учитывать следующие факторы:
- продолжительность светового дня
- положение солнца над горизонтом
- погодные условия в регионе
Практика показывает, что средний процент деградации солнечных батарей составляет 0,6 % в год. Однако, к естественным процессам прибавляются внешние воздействия — температурные, механические и т.п. Поэтому производители обычно гарантируют, что в течение 10 лет эксплуатации производительность не упадет больше, чем на 10 %.
Вопрос окупаемости солнечных панелей всерьез никем не рассматривается. Существуют приблизительные расчеты, показывающие количество выработанной энергии и ее среднюю стоимость в течение 10, 25 лет. Эти данные не способны показать реальной картины, поскольку все комплексы работают в собственных условиях, подвергаются тем или иным воздействиям и не могут гарантировать заданной производительности.
Специалисты утверждают, что для некоторых регионов окупаемость солнечных батарей никогда не наступает, в других местностях она составляет около 10 или 15 лет.
Подробные исследования не производятся, или ведутся только для данного района. Если необходимо узнать технико-экономические показатели СЭС, приходится каждый раз производить индивидуальный расчет для данных условий, моделей солнечных модулей и прочих факторов воздействия.
Самые эффективные солнечные батареи
Обычный пользователь не старается глубоко вникнуть в теорию, поэтому он чаще всего задает вопрос — хочу купить солнечные панели, какие лучше? Вопрос простой, но ответить на него однозначно крайне сложно. Все зависит от возможностей и потребностей покупателя.
Споры о том, какие солнечные батареи самые эффективные ведутся с самого начала их использования. Несмотря на приоритет кристаллических кремниевых конструкций, нередко впереди оказываются другие виды панелей. Есть рекордсмены в этой области, например, фирма Sharp объявила о создании панелей с КПД 44 %. Эта же фирма создала модули с эффективностью 37,9 %. Есть образцы от других разработчиков с КПД около 32 %. Все эти модели весьма дороги и в массовое производство пока не поступают. Нерентабельность — основная проблема развития солнечных модулей.
Исследования и разработки для повышения КПД
Наиболее перспективным направлением исследований считается создание многослойных панелей. Основной упор делается на возможность получения энергии от инфракрасных и ультрафиолетовых лучей, которые во многом более активны, чем видимые части спектра. Работы ведутся и в области очистки кремниевых структур, создания наиболее однородных и чистых кристаллов.
Еще одним направлением является создание максимально плотных и ровных соединений полупроводников. Электрический ток возникает на границе двух материалов, и, если поверхность обоих изобилует впадинами и прочими изъянами, эти участки исключаются из общей рабочей зоны. Проблема технически сложная, поскольку речь идет о микронной точности шлифовки. Для промышленного производства эти методики пока слишком сложны, а цены на панели будут недоступны рядовым покупателям. Процесс исследований происходит непрерывно, поэтому ожидать положительных сдвигов можно в любой момент.
Видео-инструкция по сборке своими руками
Источник
КПД солнечных батарей – от чего зависит, работа в пасмурную погоду
Если вы хотите самостоятельно себя обслуживать электричеством, тогда идеальным вариантом является установка солнечной системы. При помощи размещения солнечных батарей вы сможете перерабатывать солнечный свет на электричество и тем самым покрывать все свои нужды, не прибегая к услугам общей сети. Но здесь одной или двух батарей будет недостаточно. Придется обзавестись целым комплектом. Чтобы в полном объеме покрывать электрорасходы своего дома, необходимо перед покупкой солнечных батарей ознакомиться с основными техническими характеристиками, а в особенности с показателем чистой выработки (КПД).
Показатель КПД солнечных панелей
КПД – это коэффициент полезного действия, который измеряется в процентах. Для солнечных батарей – это показатель, который определяет, сколько электричества на выходе мы получим при попадании на поверхность панелей солнечного света. Другими слова – это экономическая целесообразность работы солнечной батареи. В данный показатель уже включены все затраты, которые направляются на переработку солнечного света в электричество с учетом работы и других дополнительных технических устройств.
Важно понимать, что эта цифра на выходе не всегда будет в рамках заявленной производителем. Процент эффективности работы панели указывается с учетом соблюдения всех правил, то есть угла наклона солнечных лучей и уровня радиации. В случае облачной погоды или изменения траектории солнечных лучей в зависимости от времени года показатель КПД будет снижаться. Поэтому, чтобы не терять электричество, приходится покупать больше солнечных батарей, чтобы исключить риски нехватки энергии на покрытие всех потребностей.
От чего зависит КПД
На высокий процент эффективной выработки электроэнергии батареями влияет множество факторов. Основными из них являются:
- Угол падения солнечного света на поверхность панелей.
- Температурный коэффициент.
- Погодные условия.
- Наличие тени, грязи, снега.
- Затемнение элементов.
Максимальная эффективность солнечных панелей достигается при попадании солнечного света на поверхность модулей под углом 90 градусов, то есть перпендикулярно. При этом, даже если батарея располагается с учетом всех требований угла наклона, поверхность фотоэлементов должна быть чистой и не заслоняться деревьями или другими постройками.
При установке солнечных модулей следуйте рекомендациям специалистов. Во-первых, выбирайте южную сторону для размещения конструкций, чтобы избежать попадания тени на них, а во-вторых, соблюдайте угол наклона согласно времени года и региона проживания. Ведь чем больше солнечного света попадает на поверхность, тем выше КПД, а соответственно, и выработка электроэнергии. Учитывайте, что в зимнее время показатель эффективности может подать в половину, а то и больше. И не забывайте очищать модули от снега и грязи, так как это становится препятствием для попадания света.
Еще одним важным препятствием, снижающим общую эффективность выработки батареями электрического тока, выступает температурный коэффициент. В результате попадания солнечных лучей на поверхность модулей они нагреваются, температура может доходить до 80 градусов. Критические температурные значения напрямую отражаются на уровне КПД. Показатель снижается. Необходимо проводить мероприятия, направленные на уменьшение потери эффективности. Например, это можно сделать за счет свободного пространства между батареями, из-за чего воздушные массы смогут охлаждать модули, а также путем периодического протирания их.
Как увеличить КПД панелей
Можно ли повысить эффективность солнечных батарей? Чтобы получить максимальный эффект от установки солнечной системы необходимо соблюдать все правила эксплуатации панелей: контролировать угол наклона, правильно разместить с возможностью проветривания, очищать поверхность фотоэлементов и исключать затемненные участки. Кроме того, отдавайте предпочтение тем батареям, которые изготовлены из высококлассного кремния. Именно они смогут обеспечить наивысший КПД.
Повысить КПД солнечной панели
Сегодня этим вопросом занимаются научно-исследовательские центры, и данное направление является приоритетным. Инженерами предпринимаются попытки производить такую солнечную систему, которая будет состоять из модулей разных материалов. Смысл такой задумки заключается в том, чтобы разные материалы и несколько слоев могли впитывать в себя все типы энергии: как инфракрасное излучение, так и ультрафиолетовое. Подобное решение сможет повысить КПД в два, а то и в три раза. Ученые предполагают, что такие современные модули смогут производить до 90% эффективности. Более высокий процент производительности позволяет не только вырабатывать больше энергии, но и сократить срок окупаемости.
Максимальные показатели КПД
Стандартной для хороших дорогих монокристаллических панелей является выработка энергии на уровне 20-25%. Если взять во внимание отдельные высококачественные панели, то максимальное значение зафиксировано на уровне 30% для домашних условий и 25% для промышленных объектов. Также на рынке есть модели с показателями КПД до 47%. На сегодняшний день это самые высокие значения. Они производятся торговой маркой «Шарп» и состоят из трех слоев на основе специальных линз Френеля, благодаря чему больше фокусируют света на своей поверхности. Между слоями находится диэлектрическая прослойка, которая служит туннелем. Здесь также в преобразовании энергии участвуют световые частицы, за счет чего мощность батареи используется на полную.
Среди доступных вариантов с максимальной эффективностью лидером является солнечная батарея от мировой компании «Солар Сити». Уже несколько лет она выпускает панели с КПД более 22%. Однако сразу стоит отметить высокую стоимость таких конструкций, и позволить себе целую солнечную станцию минимум из 10 панелей сможет не каждый. Но лабораторные опыты не заканчиваются, поэтому в скором времени и в данной сфере будут свои особые технологии, которые позволят быстрее окупить затраты и получить максимум от солнца. Так же добиться максимального КПД позволяет установка правильных креплений для солнечных панелей, которые обеспечат нужный угол наклона.
Источник