- Контроллер с таймером, бюджетный для солнечных батарей.
- Контроллер заряда солнечной батареи: схема, принцип работы, способы подключения
- Контроллеры для солнечных батарей
- Применяемые на практике виды
- Структурные схемы контроллеров
- Вариант #1 – устройства PWM
- Вариант #2 – приборы MPPT
- Способы подключения контроллеров
- Техника подключения моделей PWM
- Порядок подключения приборов MPPT
- Выводы и полезное видео по теме
- Солнечная батарея (+ контроллер) для доработки питания насоса домашнего водопада
- Солнечная панель
- Контроллер
- Контроллер (и панель) в работе
Контроллер с таймером, бюджетный для солнечных батарей.
Купил отличный контроллер для уличного освещения, контроллер дошел быстро.
Проблем в работе нет, ранее покупал аналогичный образец который долгое время работал отлично! оценка 5 из 5
/>
Спешу отметить отличную работу с Автомобильными аккумуляторами! За больше чем год работы, аккумулятор не потерял своих характеристик, и ни разу не кипел! А это говорит о том что данный контроллер может быть использован для АГМ АКБ, на них он тоже тестировался!
В основном назначение данного контроллера было освищение двора в ночное время суток из за его дополнительной функции, а именно управляемого таймера, диагностики или включения при отсутствии солнца и отключения при появлении солнца!
Так как возникли проблемы с другими контроллерами для домашнего освещения, не осталось выбора как использовать этот контроллер. Поэтому он работал и на улице под крышей бани от -45 до +40, ну а потом в тепличных домашних условиях.
Кстате после улицы данный контроллер был разобран для того чтобы оценить последствия морозов, и о чудо их просто не было! Контроллер имеет также датчик температуры, который в свою очередь служит компенсатором потерь АКБ по температуре, что помогает АКБ справляться с тяжелыми условиями работы, как в жаркие дни так и в холодные.
Данный контроллер не имеет защиты от влаги и тем ни менее ему это не мешает!
Плюсы: стабильная работа, правильная амплитуда сигнала, работа в за предельных для контроллера режимах свыше 15А, не гробит аккумуляторы, не перезаряжает и не кипятит АКБ. дополнительная функция таймера.
Минусы: сгорает если долго не подключать АКБ, при подключенной солнечной батареи, при кратковременном отключении большая вероятность что он вам это простит.
Подробности можно найти, по ссылке: peling.ru/kontroller-s-taymerom-samyiy-luchshiy-iz-byudzhetnyih-dlya-solnechnyih-batarey/
Источник
Контроллер заряда солнечной батареи: схема, принцип работы, способы подключения
Солнечная энергетика пока что ограничивается (на бытовом уровне) созданием фотоэлектрических панелей относительно невысокой мощности. Но независимо от конструкции фотоэлектрического преобразователя света солнца в ток это устройство оснащается модулем, который называют контроллер заряда солнечной батареи.
Действительно, в схему установки фотосинтеза солнечного света входит аккумуляторная батарея – накопитель энергии, получаемой от солнечной панели. Именно этот вторичный источник энергии обслуживается в первую очередь контроллером.
В представленной нами статье разберемся в устройстве и принципах работы этого прибора, а также рассмотрим способы его подключения.
Контроллеры для солнечных батарей
Электронный модуль, называемый контроллером для солнечной батареи, предназначен выполнять целый ряд контрольных функций в процессе заряда/разряда аккумулятора солнечной батареи.
Когда на поверхность солнечной панели, установленной, к примеру, на крыше дома, падает солнечный свет, фотоэлементами устройства этот свет преобразуется в электрический ток.
Полученная энергия, по сути, могла бы подаваться непосредственно на аккумулятор-накопитель. Однако процесс зарядки/разрядки АКБ имеет свои тонкости (определённые уровни токов и напряжений). Если пренебречь этими тонкостями, АКБ за короткий срок эксплуатации попросту выйдет из строя.
Чтобы не иметь таких грустных последствий, предназначен модуль, именуемый контроллером заряда для солнечной батареи.
Помимо контроля уровня заряда аккумулятора, модуль также отслеживает потребление энергии. В зависимости от степени разряда, схемой контроллера заряда аккумулятора от солнечной батареи регулируется и устанавливается уровень тока, необходимый для начального и последующего заряда.
В общем, если говорить простым языком, модуль обеспечивает беззаботную «жизнь» для АКБ, что периодически накапливает и отдаёт энергию устройствам-потребителям.
Применяемые на практике виды
На промышленном уровне налажен и осуществляется выпуск двух видов электронных устройств, исполнение которых подходит для установки в схему солнечной энергетической системы:
- Устройства серии PWM.
- Устройства серии MPPT.
Первый вид контроллера для солнечной батареи можно назвать «старичком». Такие схемы разрабатывались и внедрялись в эксплуатацию ещё на заре становления солнечной и ветряной энергетики.
Принцип работы схемы PWM контроллера основан на алгоритмах широтно-импульсной модуляции. Функциональность таких аппаратов несколько уступает более совершенным устройствам серии MPPT, но в целом работают они тоже вполне эффективно.
Конструкции, где применяется технология Maximum Power Point Tracking (отслеживание максимальной границы мощности), отличаются современным подходом к схемотехническим решениям, обеспечивают большую функциональность.
Но если сравнивать оба вида контроллера и, тем более, с уклоном в сторону бытовой сферы, MPPT устройства выглядят не в том радужном свете, в котором их традиционно рекламируют.
Контроллер типа MPPT:
- имеет более высокую стоимость;
- обладает сложным алгоритмом настройки;
- даёт выигрыш по мощности только на панелях значительной площади.
Этот вид оборудования больше подходит для систем глобальной солнечной энергетики.
Под нужды обычного пользователя из бытовой среды, имеющего, как правило, панели малой площади, выгоднее купить и с тем же эффектом эксплуатировать ШИМ-контроллер (PWM).
Структурные схемы контроллеров
Принципиальные схемы контроллеров PWM и MPPT для рассмотрения их обывательским взглядом – это слишком сложный момент, сопряжённый с тонким пониманием электроники. Поэтому логично рассмотреть лишь структурные схемы. Такой подход понятен широкому кругу лиц.
Вариант #1 – устройства PWM
Напряжение от солнечной панели по двум проводникам (плюсовой и минусовой) приходит на стабилизирующий элемент и разделительную резистивную цепочку. За счёт этого куска схемы получают выравнивание потенциалов входного напряжения и в какой-то степени организуют защиту входа контроллера от превышения границы напряжения входа.
Здесь следует подчеркнуть: каждая отдельно взятая модель аппарата имеет конкретную границу по напряжению входа (указано в документации).
Далее напряжение и ток ограничиваются до необходимой величины силовыми транзисторами. Эти компоненты схемы, в свою очередь, управляются чипом контроллера через микросхему драйвера. В результате на выходе пары силовых транзисторов устанавливается нормальное значение напряжения и тока для аккумулятора.
Также в схеме присутствует датчик температуры и драйвер, управляющий силовым транзистором, которым регулируется мощность нагрузки (защита от глубокой разрядки АКБ). Датчиком температуры контролируется состояние нагрева важных элементов контроллера PWM.
Обычно уровень температуры внутри корпуса или на радиаторах силовых транзисторов. Если температура выходит за границы установленной в настройках, прибор отключает все линии активного питания.
Вариант #2 – приборы MPPT
Сложность схемы в данном случае обусловлена её дополнением целым рядом элементов, которые выстраивают необходимый алгоритм контроля более тщательно, исходя из условий работы.
Уровни напряжения и тока отслеживаются и сравниваются схемами компараторов, а по результатам сравнения определяется максимум мощности по выходу.
Главное отличие этого вида контроллеров от приборов PWM в том, что они способны подстраивать энергетический солнечный модуль на максимум мощности независимо от погодных условий.
Схемой таких устройств реализуются несколько методов контроля:
- возмущения и наблюдения;
- возрастающей проводимости;
- токовой развёртки;
- постоянного напряжения.
А в конечном отрезке общего действия применяется ещё алгоритм сравнения всех этих методов.
Способы подключения контроллеров
Рассматривая тему подключений, сразу нужно отметить: для установки каждого отдельно взятого аппарата характерной чертой является работа с конкретной серией солнечных панелей.
Так, например, если используется контроллер, рассчитанный на максимум входного напряжения 100 вольт, серия солнечных панелей должна выдавать на выходе напряжение не больше этого значения.
Прежде чем подключать аппарат, необходимо определиться с местом его физической установки. Согласно правилам, местом установки следует выбирать сухие, хорошо проветриваемые помещения. Исключается присутствие рядом с устройством легковоспламеняющихся материалов.
Недопустимо наличие в непосредственной близости от прибора источников вибраций, тепла и влажности. Место установки необходимо защитить от попадания атмосферных осадков и прямых солнечных лучей.
Техника подключения моделей PWM
Практически все производители PWM-контроллеров требуют соблюдать точную последовательность подключения приборов.
Подключать периферийные устройства нужно в полном соответствии с обозначениями контактных клемм:
- Соединить провода АКБ на клеммах прибора для аккумулятора в соответствии с указанной полярностью.
- Непосредственно в точке контакта положительного провода включить защитный предохранитель.
- На контактах контроллера, предназначенных для солнечной панели, закрепить проводники, выходящие от солнечной батареи панелей. Соблюдать полярность.
- Подключить к выводам нагрузки прибора контрольную лампу соответствующего напряжения (обычно 12/24В).
Указанная последовательность не должна нарушаться. К примеру, подключать солнечные панели в первую очередь при неподключенном аккумуляторе категорически запрещается. Такими действиями пользователь рискует «сжечь» прибор. В этом материале более подробно описана схема сборки солнечных батарей с аккумулятором.
Также для контроллеров серии PWM недопустимо подключение инвертора напряжения на клеммы нагрузки контроллера. Инвертор следует соединять непосредственно с клеммами АКБ.
Порядок подключения приборов MPPT
Общие требования по физической инсталляции для этого вида аппаратов не отличаются от предыдущих систем. Но технологическая установка зачастую несколько иная, так как контроллеры MPPT зачастую рассматриваются аппаратами более мощными.
Например, для мощных систем эти требования дополняются тем, что производители рекомендуют брать кабель для линий силовых подключений, рассчитанный на плотность тока не менее чем 4 А/мм 2 . То есть, например, для контроллера на ток 60 А нужен кабель для подключения к АКБ сечением не меньше 20 мм 2 .
Соединительные кабели обязательно оснащаются медными наконечниками, плотно обжатыми специальным инструментом. Отрицательные клеммы солнечной панели и аккумулятора необходимо оснастить переходниками с предохранителями и выключателями.
Такой подход исключает энергетические потери и обеспечивает безопасную эксплуатацию установки.
Перед подключением солнечных панелей к прибору следует убедиться, что напряжение на клеммах соответствует или меньше напряжения, которое допустимо подавать на вход контроллера.
Подключение периферии к аппарату MTTP:
- Выключатели панели и аккумулятора перевести в положение «отключено».
- Извлечь защитные предохранители на панели и аккумуляторе.
- Соединить кабелем клеммы аккумулятора с клеммами контроллера для АКБ.
- Подключить кабелем выводы солнечной панели с клеммами контроллера, обозначенными соответствующим знаком.
- Соединить кабелем клемму заземления с шиной «земли».
- Установить температурный датчик на контроллере согласно инструкции.
После этих действий необходимо вставить на место ранее извлечённый предохранитель АКБ и перевести выключатель в положение «включено». На экране контроллера появится сигнал обнаружения аккумулятора.
Далее, после непродолжительной паузы (1-2 мин), поставить на место ранее извлечённый предохранитель солнечной панели и перевести выключатель панели в положение «включено».
Экран прибора покажет значение напряжения солнечной панели. Этот момент свидетельствует об успешном запуске энергетической солнечной установки в работу.
Выводы и полезное видео по теме
Промышленностью выпускаются устройства многоплановые с точки зрения схемных решений. Поэтому однозначных рекомендаций относительно подключения всех без исключения установок дать невозможно.
Однако главный принцип для любых типов приборов остаётся единым: без подключения АКБ на шины контроллера соединение с фотоэлектрическими панелями недопустимо. Аналогичные требования предъявляются и для включения в схему инвертора напряжения. Его следует рассматривать как отдельный модуль, подключаемый на АКБ прямым контактом.
Если у вас есть необходимый опыт или знания, пожалуйста, поделитесь им с нашими читателями. Оставляйте свои комментарии в расположенном ниже блоке. Здесь же можно задать вопрос по теме статьи.
Источник
Солнечная батарея (+ контроллер) для доработки питания насоса домашнего водопада
Недавно опубликовывал отчет, про строительство водопада в саду — данный обзор об улучшении работы системы в моменты отсутствия солнца (облачность и вечернее время)
Как я писал в том отчете, при пропадании солнца (тучка набежала или вечереет) декоративный водопадик превращался в тыкву в эдакую альпийскую горку — вода переставала стекать по камням и все замолкало…
как-то так 🙁 Если рассматривать плохую (дождливую) погоду, то это не страшно- просто некому наблюдать за «красотой».
Кратковременные затенения тучками наоборот, даже некоторый цимус придают- меняется напор воды и форма/направления стекания ручейков.
А как вот как быть с относительно вечерним временем — когда еще хочется посидеть рядом с водопадиком, попить чай, «побаловаться плюшками», а солнца уже недостаточно для работы насоса? 🙂
Для решения вышеописанной проблемы, как минимум, требуется более крупная солнечная панель (с относительно недешевым ценником). Хотелось конечно сразу купить… но «жаба» давала о себе знать 🙁
Случайно попался на глаза, указанный в шапке лот, в котором, при отправке из России, получалась весьма приятная цена — не смог устоять! 🙂
Некоторое время даже не мог определиться с мощностью батареи- за указанную стоимость «чесалось» купить заметно бОльшую мощность, для использования не только с водопадом. Потом взял себя в руки, поумерил свои желания- и решил опробовать сначала небольшую батарею, во избежание попадания ее в кучу «бесполезных» покупок.
Основная идея покупки этого лота:
ну, во-первых, более мощная солнечная панель, что уже само по-себе будет давать более продолжительную работу (при меньшем освещении)
а во-вторых, что мне было даже более интересно — программируемый контроллер, который, кстати говоря, уже идет в комплекте.
Данный контроллер возможно настроить на отключение использования внешнего аккумулятора при разрядке до определенного напряжения… мысль улавливаете?
Рассматриваемая солнечная панель способна, кроме работы насоса, обеспечивать текущий подзаряд аккумулятора.
… наступает вечер или тучки набегают, контроллер переключается на работу от заряженного аккумулятора и работает до установленного нами напряжения!
То есть, например, ставим мы «граничное» напряжение на вольт ниже полностью заряженного, и насос работает полчаса от аккумулятора, затем выключается.
Устанавливаем напряжение отключение ниже на 2 вольта, и работает насос уже пару часов.
Пример чисто теоретический — зависит от емкости аккумулятора, потребляемого тока насосом и т.п., но думаю создать подобный регулируемый «буфер» вполне реально.
Заработает ли моя идея- узнаем вместе! 😉
На момент написания этой части обзора, я сам еще не знаю, чем закончится эксперимент!
Сначала немного покажу саму купленную солнечную панель, контроллер… а затем уже перейдем к «тактическим» и практическим экспериментам 😉
но на момент покупки не все были в наличии в России (по эконом цене)
DSP-10P + USB
Максимальная мощность (Pmax): 10 Вт
Максимальное напряжение питания (Vmp): 18,00 в
Максимальный ток мощности (Imp): 0.56A
Напряжение открытой цепи (Voc): 22,5 в
Ток короткого замыкания (Isc): 0.81A
Размеры: 280*350*17 мм
Вес: 1,5 кг
DSP-20P + USB
Максимальная мощность (Pmax): 20 Вт
Максимальное напряжение питания (Vmp): 18,00 в
Максимальный ток мощности (Imp): 1.11A
Напряжение открытой цепи (Voc): 21,60 в
Ток короткого замыкания (Isc): 1.3A
Вес: 1,9 кг
Размеры: 480*350*17 мм
DSP-30P + USB
Максимальная мощность (Pmax): 30 Вт
Максимальное напряжение питания (Vmp): 18,00 в
Максимальный ток мощности (Imp): 1.66A
Напряжение открытой цепи (Voc): 22,5 в
Ток короткого замыкания (Isc): 1.91A
Вес: 2,8 кг
Размеры: 350*660*25 мм
DSP-40P + USB
Максимальная мощность (Pmax): 40 Вт
Максимальное напряжение питания (Vmp): 18,00 в
Максимальный ток мощности (Imp): 2.22A
Напряжение открытой цепи (Voc): 21,60 в
Ток короткого замыкания (Isc): 2.47A
Вес: 3,5 кг
Размеры: 450*660*25 мм
DSP-50P + USB
Максимальная мощность (Pmax): 50 Вт
Максимальное напряжение питания (Vmp): 18,00 в
Максимальный ток мощности (Imp): 2.78A
Напряжение открытой цепи (Voc): 22,50 в
Ток короткого замыкания (Isc): 3.03A
Вес: 4,1 кг
Размеры: 530*660*25 мм
DSP-80P + USB
Максимальная мощность (Pmax): 80 Вт
Максимальное напряжение питания (Vmp): 18,00 в
Максимальный ток мощности (Imp): 4.44A
Напряжение открытой цепи (Voc): 21,60 в
Ток короткого замыкания (Isc): 4.69A
Вес: 6 кг
Размеры: 760*660*25 мм
DSP-100P
Максимальная мощность (Pmax): 100 Вт
Максимальное напряжение питания (Vmp): 18,00 в
Максимальный ток мощности (Imp): 5.81A
Напряжение открытой цепи (Voc): 21,6 в
Ток короткого замыкания (Isc): 5.56A
Вес: 4,1 кг
Размеры: 530*660*25 мм
Все панели, кроме самой мощной, укомплектованы контроллером заряда (с юсб выходом)
Солнечная панель
DSP-20P + USB
Максимальная мощность (Pmax): 20 Вт
Максимальное напряжение питания (Vmp): 18,00 в
Максимальный ток мощности (Imp): 1.11A
Напряжение открытой цепи (Voc): 21,60 в
Ток короткого замыкания (Isc): 1.3A
Вес: 1,9 кг
Размеры: 480*350*17 мм
В верхней части батареи находится коробка коммутации, открывается довольно туго…
Внутри, кроме диода (используется по-сути при групповых соединениях) и контактов ничего нет 🙂
Контроллер
Самая левая кнопка«меню» — при нажатии поочередно, по кругу, отображает: напряжение поддерживаемого заряда, напряжение на аккумуляторе включения нагрузки, напряжение отключения нагрузки, таймер работы нагрузки, тип используемого аккумулятора.
Правая кнопка — «ручное вкл/выкл нагрузки»
При удерживании кнопки «меню» на интересующем нас пункте можно войти в режим редактирования выбранного параметра (мигает индикация), при этом средняя и правая кнопки используются как ±
Имеется несколько вариантов работы нагрузки по расписанию:
24Н — нагрузка включена круглосуточно, возможно ручное управление правой кнопкой
0Н — нагрузка включается после захода солнца (в темноте) и выключается при появлении освещения.
1-23Н -продолжительность работы нагрузки, после захода солнца в часах.
При отключении аккумулятора, выбранные настройки сохраняются!
Довольно удобный таймер (при использовании в качестве нагрузки освещения ;), для моих же целей, логика работы таймеров не подходит 🙁
вид снизу
Сверху маркировка модели с краткими характеристиками
задняя часть пустая, металлическая плоская- бывают варианты использования рельефных пластин, так как задняя стенка на всех подобных контроллерах выполняет роль радиатора охлаждения.
Для сравнении две панели
На ярком солнце, без нагрузки, новая солнечная панель выдает до 21в
При затенении до 18.5в
и ток короткого замыкания 1А — т.е. в принципе мощность соответствует описанию.
Для примера, «старая» панель выдавала 19в на таком же солнце
и 16 при затенении
Ток, к сожалению, на этой панели сложно замерить — при замере только кратковременно появлялись цифры, и пропадали, наверное имеются какие-то элементы в залитой компаундом «черной коробочке» сзади панели.
Кратковременные показания появлялись примерно от 0.4 до 0.6А, то есть тоже примерно соответствуют заявленной мощности
Контроллер (и панель) в работе
Во всех инструкциях на подобные контроллеры имеется предупреждение о соблюдении последовательности подключения во избежании… неприятностей.
Первым подключается аккумулятор (его использование при работе контроллера обязательно), затем солнечная панель и уже последней нагрузка.
После подключения аккумулятора, на экране появляется его значок с текущим напряжением заряда и иконка подключенной нагрузки.
Текущее напряжение аккумулятора, контроллер показывает с заметной погрешностью — в моем экземпляре ошибка 0.3В
Как только подключаем солнечную панель, загорается иконка солнечной батареи и стрелка (от панели к аккумулятору) -начинает заряжаться аккумулятор, то есть на вид все нормально работает.
Значок нагрузки не светится — я отключил ее правой кнопкой
Зарядный ток Кстати к USB выходам контроллера тоже нет претензий — смартфон заряжается без проблем, вот только токи заряда замерять не стал, особого смысла не вижу, да и пользоваться USB не планирую.
В процессе экспериментов оказалось, что контроллер настроить можно в определенных пределах, и например, установку отключения нагрузки невозможно установить выше 11.3в, а это не очень удобно для воплощения моей идеи- работа насоса будет слишком продолжительной
Поддерживаемое напряжение заряда возможно настроить в пределах:
Напряжение включения нагрузки (защита аккумулятора от разряда)
Напряжение отключения нагрузки (защита аккумулятора от разряда)
После отключения контроллера от аккумулятора, настройки сохраняются
Как я понимаю, что бы получить минимальное время работы необходимо установить минимальное напряжение заряда (12.7), 11.5 включение нагрузки и 11.3 отключение нагрузки… но и при таких настройках продолжительность работы даже от старой батареи УПСа оказалась более 9 часов!
Надо искать аккумулятор меньшей емкости, или подбирать более «дохлый» с УПСа (хорошо что у меня на работе их «как грязи», в принципе не проблема :)))
Хотя… в голову пришел еще один интересный вариант- можно увеличить нагрузку!
И сделать ее можно «полезной» — например подключить подсветку водопада с датчиком освещения, так даже симпатичнее должно получиться в сумерках и вечером.
К сожалению в этом обзоре не смогу Вам показать фото конечного результата -осень, холодает, не актуально сейчас этим уже заниматься. За зиму что-нибудь соберу/прикуплю интересное, весной буду собирать 🙂
В принципе доволен! Насос от этой солнечной панели ЯВНО работает дольше (при меньшем освещении) + ее мощности на солнце достаточно для заряда аккумулятора + имеется в комплекте контроллер, с помощью которого возможно организовать практически круглосуточную работу водопада.
Логика таймеров контроллера в большей степени «заточена» под работу освещения в вечернее и ночное время -мне не слишком удобна, но возможно пригодится другим пользователям.
Источник