Контроллер ветрогенератора mppt принцип работы

MPPT контроллер фотон 100-50 работа с ветрогенератором

Давно я искал mppt контроллер способный работать с ветрогенератором и наконец нашёл. Ранее я изучал эту тему и искал информацию о работе солнечных mppt контроллеров, но в основном все говорили что контроллеры не хотят работать с ветрогенераторами, и при низкой скорости ветра когда заряд АКБ не постоянный контроллеры постоянно уходят в перезагрузку пытаясь отыскать точку максимальной мощности.

Но я нашёл видео где с ветряками работали контроллеры фотон 100-50 и я «загорелся» этим контроллером, тем-более что он очень и по цене очень привлекателен. За 5000 рублей полноценный MPPT на 50А с входным напряжением до 100 вольт это просто находка. В итоге я наконец получил этот контроллер и в первый-же день начал тестировать этот контроллер с ветрогенератором. Полное описание и характеристики на фотон 100-50 на официальом сайте — MPPT конртрроллер Фотон 100-50

Видео — первая работа контроллера с ветряком

Первые впечатления о работе контроллерп с ветряком меня очень обрадовали. Ранее ветрогенератор работал напрямую на заряд аккумулятора без специальных контроллеров, был правда китайский контроллер, но он жёстко тормозил ветряк при превышении напряжения на АКБ, он останавливал его замыкая обмотки генератора и это мне очень не нравилось. Ветряк получал сильные удары, и я сделал самодельный балластный регулятор.

Ветрогенератор работал неплохо при соединении всех трёх фаз в параллель, но зарядка при слабом ветре была не постоянной так-как для начала заряда требовалось 200 об/м генератора и скорость ветра примерно 3,5 м/с. А при соединении обмоток генератора в звезду винт не осилял генератор. Зарядка начиналась уже при 90-100 об/м, почти сразу как только винт начинал вращаться и из-за этого он не мог набрать обороты и мощность. Но зато зарядка была всегда, даже при слабеньком ветре. В общем соединение звездой это для 24 вольт акб, но у меня 12 вольт система.

Читайте также:  Кинетический ветрогенераторы индастриал крафт 2

После того как я подключил его к контроллеру ФОТОН то всё изменилось. Ветрогенератор заработал при соединении обмоток в звезду. Зарядка так-же начиналась очень рано, и теперь если скорость ветра увеличилась то контроллер позволяет винту раскручиваться и снимал с ветряка значительно больше мощности. Во втором видео это хорошо видно.

Работа ветрогенератора с контроллером фотон

Контроллер имеет несколько режимов работы:

Первый режим это работа без MPPT, в этом режиме он работает по сути как PWM и ничего не добавляет и не отслеживает максимльную точку мощности.

Второй режим это сканирования максимальной точки. В этом режиме контроллер примерно раз в минуту сканирует напряжение холостого хода по входу и на основе этого просаживает напряжение примерно на 70-80% и снимает мощность. Этот режим хорош для работы с солнечными панелями, но за ветряком он не успевает, так-как у ветряка напряжение изменяется очень быстро и часто, оно зависит от скорости ветра.

Третий режим работы это также сканирование напряжения и движению к максимуму отбора энергии. Контроллер также примерно раз в минуту сканирует напряжение холостого хода и просаживает его на 70-80%. и далее контроллер начинает нащупывать больше мощности нагружая солнечную батарею по напряжению чуть больше или меньше. Этот режим отлично работает с солнечными панелями, но для ветряка не подходит.

Четвёртый режим это нагрузка в процентах от напряжения холостого хода. Контроллер в этом режиме примерно раз в 2-3 секунды сканирует напряжение в холостую и просаживает его на 15-25% снимая мощность. На сколько просаживать напряжение можно указать в настройках, можно выбирать с какого напряжения снимать мощность. Можно задавать 70-85% от напряжения холостого хода. Именно в этом четвёртом режиме контроллер хорошо работает с ветрогенератором. Он достаточно быстро реагирует на повышение и понижение оборотов генератора, и снимает мощность анализируя напряжение холостого хода. В видео я показал как он работает в этом режиме.

Контроллер в моей ветро-солнечной электростанции

Теперь у меня ветрогенератор работает значительно лучше как при слабом ветре, так и при усилении ветра. По мощности реально прибавка как минимум 30-40%. Связано это с тем что генератор нагружается всегда одинаково в процентном соотношении от напряжения холостого хода. Как мы знаем чем больше просадка напряжения генератора тем ниже его КПД, так-как он начинает перегреваться и много тепла выделяют катушки. Но контроллер позволяет работать генератору в оптимальном режиме.

Меня также спрашивали по защите от перенапряжения, ведь контроллер может сгореть если напряжение по входу превысит 100 вольт. На самом деле контроллер имеет некоторый запас по входу и выдерживает напряжение до 117 вольт как минимум. И мой ветрогенератор в без нагрузки лишь на сильных порывах выдаёт до 100-110 вольт. Чтобы контроллер не сгорел ветряк никогда не должен превышать максимально допустимое напряжение контроллера. Ветряк должен или уходить в защиту отворачиваясь от ветра, или нужно делать балластный ограничитель напряжения. Но об этом в следующих статьях, есть у меня простое решение проблемы, и оно описано в статье — Подключение ветряка к контроллерам для солнечных батарей

Источник

Использование контроллеров СБ для ветрогенераторов

В этой статье я расскажу о том можно-ли контроллеры созданные для солнечных батарей использовать в качестве контроллеров для ветрогенератоов. Расскажу некоторые нюансы и практические способы подключения контроллеров к ветрогенераторам. Многие уже меня спрашивали на счёт того можно-ли использовать солнечные контроллеры для ветрогенераторов и я говорю что нет. — просто так любой контроллер нельзя. А нельзя потому-что когда аккумулятор уже почти заряжен, то контроллер периодически или постоянно (ШИМ) импульсами отключает солнечную панель транзисторами, которые внутри этого контроллера. Отключает он солнечную панель чтобы аккумулятор не перезарядился. У некоторых контроллеров есть многостадийные режимы зарядки, но в общем все они так или иначе отключают солнечную панель.

По-этому если вы возьмёте и подключите ветрогенератор вместо солнечной панели, предварительно выпрямив переменное напряжение фаз в постоянное с помощью трёх-фазного диодного моста, то контроллер тоже его будет отключать ограничивая напряжение чтобы АКБ не перезарядился. Но напряжение отключенной солнечной панели в холостую всего 19-21 вольт, а вот если отключить ветрогенератор, особенно на сильном ветру, то его напряжение может оказаться значительно больше, при этом без нагрузки винт раскрутится ещё больше и напряжение на холостом ходу станет ещё выше. Ну и что? — скажете вы, ну и пускай — ветряк то контроллер отключил всё равно.

Ну во-первых ветрогенератор без нагрузки оставлять нельзя в сильный ветер, без нагрузки винт будет крутится на очень больших оборотах, сильно шуметь, и испытывать сильные ветровые перегрузки, от этого ветрогенератор может просто не выдержать и «скинуть» лопасти. Часто в таких случаях отрывает (ломает) лопасти, и не выдерживают слабые мачты и ветряки падают. По-этому винт ветрогенератора должен быть всегда под нагрузкой, и если АКБ заряжены то ветряк переключается на балластную нагрузку, на нагревательные тенны или резистор.

А во-вторых как я писал выше напряжение ветрогенератора без нагрузки может доходить применительно для ветряков на 12 вольт до 60-80 вольт, и даже более. А транзисторы солнечных контроллеров рассчитаны на напряжение около 40 вольт, но не все и далее мы рассмотрим это всё. И когда контроллер

Принцип работы с ветрогенератором такой: Сам ветрогенератор подключается как солнечная панель на вход контроллера, естественно на ветрогенератор нужно поставить диодный мост чтобы на контроллер подать уже выпрямленное напряжение плюс и минус. Аккумулятор подключается штатно так-же как и обычно на своё место на контактах. А на выход Load контроллера мы подключаем балласт, это может быть нагревательный тенн, лампочки или резистор. Мощность балласта должна быть такой-же как и максимальная мощность ветрогенератора. Например если ветряк выдаёт до 300 ватт, то и балласт нужен мощностью 300 ватт, например набрать лампочек на 300 ватт мощности.

Ветрогенератор нужно подключать остановленный и в самую последнюю очередь после настройки контроллера. Сам контроллер настраивается так, кнопочками сначала поднимаем порог отключения (change off) как можно выше, например до 17-20 вольт, это для того чтобы контроллер не отключил ветряк даже если ветряк окажется мощнее балласта и напряжение кратковременно поднимется до 16-17 вольт. Некоторые модели позволяют поднять напряжение только до 15 вольт, но выставляем максимум, и тогда балласт обязательно мощнее ветряка. Далее настраиваем включение балласта, вставляем параметр (Load on) на 14,5-15 вольт, чтобы балласт включился при этом напряжении, и выставляем (Load off) на 13,5 вольт. Как настройки установлены то можно подключать и запускать ветрогенератор.

Теперь когда напряжение на аккумуляторе поднимется до установленных 14,5-15 вольт, то включится балласт и пока напряжение не просядет до 13,5 вольт от не выключится. Ветрогенератор при этом не отключится и будет всегда под нагрузкой. Ниже небольшое видео с тестированием подобного солнечного контроллера для работы с ветряком.

При этом как вы понимаете сам контроллер должны быть на тот ток что может выдать ветрогенератор. Например на видео контроллер на 30А, на него можно подключить ветрогенератор с максимальным током зарядки до 30А, и балласт до 30А максимум. При этом контроллер на дисплее так-же будет показывать все параметры, ток зарядки и напряжение что очень удобно.

Но можно использовать и слабые контроллеры для мощных ветряков, только ветрогенератор подключается не к контроллеру, а напрямую на аккумулятор. Контроллер подключается к аккумулятору отдельно, и балласт тоже подключается отдельно через реле. К контактам контроллера Load подключается реле, которое будет включать-выключать балласт, параметры включения настраиваются и контроллер уже по выставленному напряжению будет управлять балластом. В этом случае контроллер просто управляет реле, отслеживая напряжение на аккумуляторе. Но зато можно использовать дешёвый контроллер, и установив мощное реле можно подключать мощный балласт.

Так-же можно использовать контроллеры без всяких изменений, но тогда нужно быть уверенным что напряжение подключенного ветррогенератора не превысит напряжение пробоя транзисторов контроллера. Есть контроллеры 12/24 вольта с транзисторами на 80-100 вольт и даже до 150 вольт, и если ваш ветряк максимально без нагрузки выдаёт меньше напряжение то можно его подключать как солнечную панель. Но трёх-лопастные скоростные ветряки лучше не подключать так-как на сильном ветре винты без нагрузки могут не выдержать перегрузок и обороты сильно вырастают и напряжение всё-таки может превысить максимально допустимое и контроллер сгорит.

Но вот для тихоходных много-лопастных ветряков солнечные контроллеры более подходят, особенно если есть механическая защита от сильного ветра, когда винт уходит — отворачивается при сильном ветре. Если есть защита от сильного ветра складыванием хвоста то её можно настроить на более раннее срабатывание чтобы винт уходил раньше и напряжение даже отключенного контроллером ветряка не превысило максимально допустимое. Тогда и ветрогенератор будет отлично работать с солнечным контроллером.

Управление балластом для ветрогенераторов на 220 вольт

Так-же некоторые люди хотят использовать ветрогенератор для отопления и при этом ветрогенератор должен работать на тенны 220 вольт. Но если соединять тенны напрямую с ветрогенератором, то винт не может раскрутится до своей быстроходности и не выдаёт свою мощность. В итоге ветрогенератор очень плохо работает на тенны и не разгоняется, а на слабом ветру вообще останавливается. Как выход из ситуации надо подключать тенны только после того как ветряк разгонится.

Ниже схема работы для ветрогенераторов на 220 вольт. Принцип работы такой: для питания контроллера используется понижающий трансформатор на 12/220 вольт. А контроллер управляет твердотельными реле, которые подключаются к переменному напряжению генератора. Пороги срабатывания настраиваются на контроллере. Контроллер питается от 12 вольт через понижающий трансформатор, а напряжение трансформатора прямо зависит от напряжения генератора.Если ветррогенератор будет давать 100 вольт, то трансформатор выдаст 5 вольт примерно. Если ветряк выдаст 200 вольт, то на выходе трансформатора будет 10 вольт, в общем прямая зависимость. И таким образом можно настроить срабатывание реле, которые включают тенны.

Например вы хотите чтобы тенны включались при 200 вольт ветрогенератора, при этом значит контроллер питающийся от трансформатора видит 10 вольт, вот выставляем включение (Load on) на 10 вольт, и реле будут включаться при этом напряжении. А выключение при 9.5 вольт, это где то 190 вольт.

Суть всего этого я думаю вам понятна, я сам уже проверил работоспособность контроллера с балластом и балласт прекрасно работает и включается и выключается при заданных параметрах. Без балласта не пробовал, но мне попадался положительный опыт других людей подтверждающий описанное выше. Так-же сейчас для двух мощных (1 и 2кВт) ветрогенераторов установлены солнечные контроллеры на 48 вольт, на выходы Load которых подключён балласт и скоро будут практические данные и видео. На этом пока всё — спасибо что читаете.

Источник

Что такое MPPT-контроллер для заряда солнечных батарей

MPPT — это один из способов использования ресурсов источника энергии, будь то солнечная батарея или ветрогенератор, но в этой статье мы поговорим именно о солнечной энергии. Его основная особенность — повышение эффективности работы альтернативного источника, путём «вытягивания» максимального количества энергии за счет выбора определенного напряжения и тока.

Выбор этих параметров сводится к анализу вольт-амперной характеристики источника и определения при каком напряжении и потребляемом токе будет потребляться максимальная мощность. Именно так и расшифровывается аббревиатура MPPT – Maximum Power Point Tracking (слежение за точкой максимальной мощности).

Общие сведения о принципе действия MPPT-контроллеров

С первого взгляда на вопрос, можно подумать: «Ну так использовать максимально возможное напряжение, значит будет максимальный ток нагрузки (заряда АКБ)». Это логично, но в действительности это не так. В первую очередь это связано с вольт-амперной характеристикой солнечного элемента.

В рабочем (полезном) режиме солнечный элемент (горизонтальный участок ВАХ) – это источник тока, то есть его выходной ток слабо зависит от напряжения на его зажимах. Выходное напряжение (Uвыхсб) же зависит от сопротивления подключенной нагрузки. Это мы можем видеть на ВАХ.

В правой части, где напряжение максимально, вы видите напряжение холостого хода Uхх, которое ограничено количеством элементов в батарее и их внутренним устройством. Ток при этом стремится к 0. И наоборот, в левой части, где напряжение стремится к 0 – напряжение короткого замыкания Uкз, а ток ограничен мощностью элементов.

Если принять силу тока солнечной батареи на полезном участке за неизменную величину, то напряжение будет определяться сопротивлением нагрузки, если оно равно бесконечности, то мы наблюдаем режим холостого хода (при Rн=∞ ⇒ Uвыхсб=Uр.хх), соответственно при коротком замыкании сопротивление нагрузки будет стремиться к нулю, как и выходное напряжение (при Rн=∞ ⇒ Uвыхсб=Uкз). Максимальная же мощность наступит при определенном соотношении сопротивления нагрузки, напряжения и тока.

Что всё это значит? Переходим от батарей к контроллерам!

Контроллер — это промежуточное звено между солнечной батареей и аккумулятором, он регулирует ток заряда посредством ШИМ, например, или любого другого, который выбрал конструктор. Но просто подать напрямую напряжение с батареи – это не значит обеспечить максимальную передачу мощности от панелей к АКБ.

Для эффективного заряда контроллер следит за током, получаемым от батареи и её выходным напряжением, а также током, отдаваемым АКБ и напряжением на ней. Чтобы убедится в этом выберем 2 произвольных точки на ВАХ (приведем её здесь еще раз) и сравним мощность в них с обозначенной на рисунке точкой максимальной мощности (ТММ), в которой вроде бы ток не является максимальным…

Допустим у нас АКБ с номинальным напряжением в 12В, это значит, в заряженном состоянии на выводах мы получим около 14,2-14,5 В, а в разряженном около 11В, пусть в одном случае у нас 13В, а в другом – 12В. Такие напряжения и выберем с ВАХ, для примерного анализа мощности при прямом подключении «солнечная панель — аккумулятор».

Согласно ВАХ в обоих случаях батарея отдаст ток около 3.6А, мы получим следующую мощность, передаваемую в процессе заряда:

А в отмеченной на ВАХ точке максимальной мощности:

Результат очевиден – мощность в ТММ больше примерно на 25-35% в зависимости от заряженности АКБ. Но как заставить батарею отдавать ток при напряжении в 18.5В, вместо того которое присутствует на клеммах аккумуляторной батареи?

Всё просто и сложно одновременно — поиск точки максимальной мощности

Как было отмечено ранее, контроллер устанавливается между солнечными панелями (батареей) и аккумуляторами, получается, что он служит нагрузкой панелей, а АКБ нагрузкой контроллера, он же — это источник вторичного питания. Любой источник питания, да и любой прибор в электротехнике может быть представлен в виде сопротивления. Это называется «эквивалентным» или «приведенным» сопротивлением (в зависимости от конкретного случая), которое определяется по тому же закону ома, то есть можно сказать, что входное сопротивление контроллера равно:

Rконтр= Uвходное/Iвх. потр.

Напряжение точки максимальной мощности у солнечных панелей зависит от ряда факторов:

Температуры (зависимость ВАХ и положения ТММ от температуры приведена на рисунке ниже);

Возраста элементов и пр.

Поэтому задать его фиксированным и универсальным не получится, плюс оно изменяется в соответствии с сопротивлением нагрузки и потребляемым током (выше приведена идеализированная ВАХ, на практике всё же будет некоторый наклон на рабочем участке).

Есть множество методов нахождения этой «волшебной», в одном из вариантов реализации MPPT-контроллер сканирует ВАХ солнечных элементов определяя оптимальные параметры для текущих рабочих условий, например, изменяя входной ток, соответственно изменяется его входное сопротивление. С помощью датчиков тока и напряжения система управления вычисляет значение мощности и сравнивает его с предыдущим, до тех пор, пока она не достигнет максимального значения. Это называется «методом возмущения и наблюдения».

В зависимости от конкретного метода определения ТММ и внутреннего устройства контроллера, в т.ч. его прошивки, поиск ТММ происходит с определенной периодичностью. Однако на практике большинство методов являются схожими и основаны на принципе «отклониться и наблюдать». В некоторых моделях есть возможность настройки этого периода в диапазоне от 1 раза в несколько минут, до 1 раза в несколько часов. В зависимости от периодичности поиска определяется эффективность работы системы в целом.

Так как в результате изменения входных параметров мы получаем максимально возможную мощность от конкретных элементов, следующей задачей становится отдать её нагрузке, то есть использовать для заряда АКБ. В конечном итоге всё сводится к управлению электронным силовым преобразователем, допустим мы получили ток ТММ в 5А при напряжении в 17.5В, это:

Значит есть возможность отдать аккумулятору с напряжением на клеммах в 12В такой ток:

В большинстве случаев преобразование осуществляется с помощью понижающего (buck) или понижающе-повышающего преобразователя (buck-boost). Типовые структуры преобразователей мы рассматривали в статье ранее.

Тогда как при использовании ON/OFF или ШИМ-контроллеров входной и выходной ток были бы равны. Что приводит к менее эффективному распоряжению доступной мощностью, например, так как входной ток был 5А, то при таком выходном токе мощность, затрачиваемая на заряд аккумуляторов, была бы равна:

Это еще раз иллюстрирует приведенные при обсуждении вольт-амперной характеристики выше расчеты.

Однако, не стоит считать MPPT-технологию панацеей для солнечной энергетике. Разница в эффективности заряда АКБ с помощью MPPT и PWM-контроллера тем меньше, чем больше заряжен аккумулятор. Когда напряжение на его клеммах (Uакб) повышается, а разница между Uтмм понижается, то используется большая мощность солнечной панели.

Аналогично приведенному выше примеру предположим, что напряжение на АКБ не 12, а 13.5В, при условии, что солнечная панель работает с теми же параметрами, это будет выглядеть следующим образом:

Если при 12В использовалось 68% от максимальной мощности, то при 13.5В используется уже 77%. Также учтите и то, что ваши аккумуляторы не будут постоянно заряжаться, и на них не будет поступать ток одной и той же силы постоянно. Поэтому в МРРТ-контроллерах обычно реализуется несколько стадий заряда, например: MPPT (с максимальной мощностью) — выравнивающий — быстрый (форсированный) — поддерживающий. Кроме всего прочего стоит помнить, что ток солнечной батареи не должен превышать номинальный ток контроллера, иначе не реализуется максимальное использование мощности.

Но это всё не говорит нам о том, что MPPT-контроллеры не нужно использовать, а только о том, что не стоит переоценивать их пользу.

Фактом остаётся лишь то, что в нижнем ценовом сегменте устройства с технологией MPPT дороже чем PWM, но не всегда. Например, есть MPPT-контроллер «EPSolar MPPT TRACER-2210A», стоимость которого находится в пределах 180 долларов, и аналогичный по стоимости (180-200 долларов) PWM-контроллер с выходным током 20А «STECA PR2020».

При этом же есть другой PWM-прибор с тем же выходным током — «SRNE SR-HP2420» стоимостью немногим больше 20 долларов, в то время, как MPPT от этого же производителя «SRNE SR-ML2420» с таким же выходным током стоит уже 85 долларов.

Цены на некоторые модели контроллеров мы рассмотрим ниже.

Обзор современного рынка MPPT-контроллеров

В таблице не приводился полный перечень функций и защит, так как он занимает большой объём. Для сведения типовой набор функций выглядит примерно так:

от неправильной полярности подключения СП и АКБ;

от КЗ на входе солнечной панели;

от КЗ в нагрузке;

отключение солнечной панели после достижения окончания заряда АКБ;

отключение нагрузки при слишком низком напряжении на АКБ;

от обрыва в цепи АКБ;

предотвращение разряда АКБ через солнечную панель в ночное время;

контроль потребление тока нагрузкой.

Таблица отражает то, что стоимость MPPT-контроллера зависит не только от его максимальной силы тока (мощности), но и от диапазона выходных напряжений, списка поддерживаемых аккумуляторов, возможности подключения средств отображения, индикации и мониторинга, и ряда других факторов. Выбор контроллера сложен и очень индивидуален, поэтому приводить какие-то сравнения и рейтинги по меньшей мере бессмысленно.

Источник

Оцените статью