- Суперконденсаторы вместо аккумуляторов
- Применение двойного электрического слоя
- Техническая реализация
- Разновидности суперконденсаторов
- Двухслойные конденсаторы
- Гибридный суперконденсатор
- Псевдоконденсаторы
- Основные параметры
- Энергетическая плотность
- Преимущества и недостатки
- Особенности применения
- Перспективы развития
- Питание электромобилей. За суперконденсаторами будущее?
- Недостатки литий-ионных аккумуляторных батарей
- Что есть суперконденсатор?
- Преимущества суперконденсаторов
- Какие электромобили можно производить, используя суперконденсатор
- Какие перспективы, за чем будущее?
Суперконденсаторы вместо аккумуляторов
По своим основным характеристикам суперконденсаторы значительно отличаются от простых привычных конденсаторов. В них применены современные технологии, которые позволяют добиться увеличения срока службы, а также снизить токовые потери в процессе эксплуатации. Основной задачей производителей данных устройств является разработка, и создание изделий способных заменить аккумуляторы во многих отраслях.
Применение двойного электрического слоя
Продолжительное время обладателями высоких значений внутренней емкости являлись конденсаторы электролитического вида. В различных устройствах изготавливались разнообразные обкладки, у одних они производились из металла, в других в виде электролита, где изоляцией являлся оксид используемого металла. Причем у обыкновенных конденсаторов внутренняя емкость имеет значение значительно ниже и равна долям фарада, чего на практике недостаточно для питания потребителей вместо аккумуляторных батарей.
Для обеспечения питания для электропотребителей были разработаны устройства на основе применения двойного электрического поля. Данное явление может возникать на границах материала или вещества при определенных условиях в жидком или твердом состоянии. В результате образуются два слоя разнополярных ионов одинакового размера, получается своеобразный конденсатор с электродами, между которыми образуется минимальное расстояние равное нескольким атомам.
Интересно знать! Устройства, полученные таким способом, называют ионисторами, а также суперконденсатор или ультраконденсатор.
Техническая реализация
Ионистор или суперконденсатор представляет собой устройство в конструкции которого имеются два электрода или пластины, изготовленные из активированного угля. Пространство между ними заполнено специальным электролитом, также между обкладками располагается мембрана, благодаря которой не происходит перемещение частиц электродов, а электролит свободно проникает в данное пространство.
Причем стоит отметить, что самостоятельно данные устройства не имеют определения полярности заряда конкретных электродов. Это свойство является одним из главных отличий от конденсаторов электролитического вида, в которых несоблюдение правильного подключения приводило к преждевременному выходу из строя. Однако при производстве на ионисторах наносится маркировка с указанием полярности, в результате того, что в процессе производства данные накопители энергии уже выходят заряженные.
Разновидности суперконденсаторов
В настоящее время все ультраконденсаторы разделяют на три основных вида:
- Двухслойные.
- Гибридные.
- Псевдоконденсаторы.
Двухслойные конденсаторы
Данные устройства представляют собой изделие в конструкции которых применяются электроды с наличием пор, покрытых углеродом повышенной проводимости между ними находится специальный сепаратор. Благодаря разделению зарядов на электродах происходит образование значительного значения потенциала, в результате чего происходит накопление энергии.
Интересно знать! На величину емкости оказывает непосредственное влияние значение двойного слоя.
Двойной слой в такой конструкции выполняет роль конденсатора поверхностного. Благодаря электролиту два слоя объединяются в последовательную цепочку.
Гибридный суперконденсатор
Данный вид накопителей электроэнергии считается промежуточным между аккумуляторами и конденсаторами. В конструкции таких устройств применяются электроды, изготовленные из различных материалов, в результате чего емкость заряд накапливается разными способами.
Непосредственно сам процесс восстановления заряда происходит благодаря реакции окислительно-восстановительного вида. Такая конструкция позволяет значительно увеличить внутреннюю емкость и повысить рабочее напряжение. Электроды состоят из соединения сложных проводящих полимеров, которые в сочетании между собой представляют материал повышенных электрических характеристик.
Псевдоконденсаторы
Данные устройства представляют собой изделия несколько похожие по свои основным характеристикам на АКБ, они имеют два твердых электрода.
В результате чего стало возможным применять конденсатор вместо аккумулятора. Принцип действия состоит из двух основных механизмов:
- рабочие циклы заряд-разряд;
- электростатические реакции, которые наблюдаются в устройствах с двойным слоем.
Интересно знать! Емкость псевдоконденсаторов зависит от реакций переноса электролитических зарядов.
Основные параметры
К основным характеристикам суперконденсатора следует отнести:
- время заряда, имеет малое значение и равно от 1 с до 10 с;
- в сравнении с кислотными аккумуляторами имеют значительное число рабочих циклов, практически более 30000 часов;
- номинальное рабочее напряжение имеет значение до 2,75 В;
- срок службы до 15 лет;
- диапазон рабочих температур от -45°С до +65°С;
- удельная энергоемкость имеет значение до 5 Вт*ч/ кг.
Энергетическая плотность
Способность ионисторов накапливать энергию ниже, чем у кислотных аккумуляторных батарей. Значение энергии зависит от внутреннего сопротивления устройства, чем оно ниже, тем выше плотность энергии. Современные разработки позволяют применять такие материалы как азот и графен, благодаря которым удалось добиться значительного увеличения внутренней плотности энергии.
Преимущества и недостатки
Как и любое электронное устройство ионисторы в процессе эксплуатации имеют некоторые достоинства и недостатки. К преимуществам производители относят:
- Имеют пониженную удельную стоимость, если сравнивать емкость конденсатора и аккумулятора.
- Повышенные показатели внутренней емкости, в результате чего увеличивается количество рабочих циклов заряд-разряд.
- Более надежные, а также имеют большой срок службы в отличие от кислотных и литиевых аккумуляторов.
- Отличаются экологической чистотой, благодаря применяемым материалам.
- Повышенные значения номинальной мощности.
- Возможность эксплуатирования в широком температурном диапазоне. Низкие температуры не помеха при запуске оборудования любого вида.
- Значительно увеличенный временной промежуток при восполнении заряда и при рабочем разряде.
- В отличие от аккумуляторных батарей имеют возможность полного разряда практически до нулевого значения рабочего напряжения.
Интересно знать! Суперконденсаторы имеют сравнительно малые размеры относительно других подобных приборов.
Однако при наличии многих плюсов в процессе эксплуатации присутствуют и минусы. К недостаткам относят:
- Малая плотность энергетических накоплений относительно аналогичных устройств.
- Пониженное значение напряжение на единицу внутренней емкости одного элемента.
- Увеличенное показание самостоятельного разряда.
- Не окончательно проработанная технология производства ионисторов.
Особенности применения
Широкую популярность ионисторы приобрели благодаря стремлению человечества найти новые и более эффективные средства для того, чтобы накапливать и сохранять энергию длительное время. Основным достоинством, определившим его распространение, стала возможность суперконденсатора за короткий период времени импульсно выделять значительную энергию от 0,1 с до 10 с.
Ионисторы нашли применение в установках и технике, где необходим быстрый и качественный запуск электрооборудования в короткий промежуток времени даже при отрицательных температурах. При этом уменьшаются максимальные токовые нагрузки и приводит к экономии средств. Не исключено и применение для запуска двигателя внутреннего сгорания.
При соединении конденсаторов в батарею возможно добиться максимальной емкости сопоставимой с аккумуляторной для питания электромобилей. Однако при этом вес источника питания будет значительно выше чем у обычных аккумуляторов. Разработчикам практически удалось решить проблему превышающего веса, для этого необходим графен однако такое возможно пока только в лабораторных условиях.
В настоящее время одним самых наиболее удачных применений ионисторов стало использование в общественном электротранспорте. В конструкции такой техники применяются устройства бесперебойного питания в которых присутствуют суперконденсаторы.
Аварийное освещение в которых установлены конденсаторы большой емкости вместо аккумуляторов имеют значительное преимущество перед системами с обычными аккумуляторами.
Интересно знать! Некоторые зарубежные производители встраивают резервные источники питания на основе ионисторов в светодиодные лампы.
Перспективы развития
Современные технологии и разработки позволяют предположить, что ионисторы в скором времени будут применяться практически во всех энергоемких производствах, космической промышленности, медицине и военной технике. Постепенно будет увеличиваться внутренняя емкость суперконденсаторов, в результате чего станет возможным заменить старые свинцово-кислотные батареи.
Также станет возможным внедрение в различные электронные устройства с регулированием и управлением. Причем станет доступным производство экологически чистых источников экономии энергии, которые значительно превышают аналоги по характеристикам. А также суперконденсаторы находят широкое применение в автомобильном транспорте, мобильных и электронных устройствах.
Полное вытеснение обычных аккумуляторов пока не происходит так как суперконденсаторы используются только в определенных областях. Однако наука не стоит на месте и постоянно развивается, в результате чего в скором времени мы сможем увидеть данные устройства в автомобильной технике, мобильных и электронных устройствах.
Источник
Питание электромобилей. За суперконденсаторами будущее?
В качестве источника хранения энергии для питания электромобилей сейчас в основном рассматривают литий-ионные аккумуляторные батареи. Первый аккумулятор данного типа изготовили в 1991 году. Основная характеристика, которая используется для оценки аккумуляторной батареи – удельная энергоемкость. Для литий-ионных аккумуляторов она около 250 Вт*ч/кг. Это означает, что в течение часа такой аккумулятор массой 1 килограмм может питать, например, электродвигатель мощностью 250 Ватт.
Если мощность электродвигателя легкового автомобиля будет 55 килоВатт (приблизительно 75 лошадиных сил), тогда для обеспечения 1 часа движения потребуется аккумулятор массой, равной 55.000/250 = 220 кг.
По сравнению с массой легкового автомобиля это не настолько много, но это только 1 час пробега, за который автомобиль проедет в среднем 60 километров пути. Если решать задачу увеличения пробега «в лоб», то необходимо по-тупому пропорционально увеличивать массу. А это, прежде всего, увеличение стоимости. Поэтому в электромобилях применяют различные электросберегающие технологии, например, во время торможения энергия возвращается в аккумуляторную батарею.
Недостатки литий-ионных аккумуляторных батарей
- Предельное количество циклов заряд-разряд. При последних технологиях количество этих циклов доходит до 10000. Если заряжать-разряжать АКБ пару раз в день, он может прожить лет десять, не более. Сейчас гарантийный срок работы производители определяют около 8 лет. Пока подержанный авто доберется к российским покупателям, АКБ надо будет менять, а это половина стоимости авто.
- Необходимость хранения АКБ в заряженном виде. Если довести заряд аккумулятора до нуля, и оставить на хранение в таком состоянии, он быстро теряет свою работоспособность.
- Невысокий диапазон рабочих температур. Температуры ниже минус 15 градусов Цельсия крайне опасны для литий-ионных аккумуляторов (как и выше плюс 50-ти).
- Опасность больших пиковых нагрузок по току.
- Большое время заряда в оптимальном цикле.
Что есть суперконденсатор?
Обычный конденсатор представляет собой две пластины проводника, разделенные тонким слоем диэлектрика. Конденсатор предназначен для накапливания заряда, то есть электрической энергии. Основная характеристика конденсатора – емкость. Она прямо пропорциональна площади пластин и обратно пропорциональна расстоянию между пластинами. Единица емкости конденсатора – 1 Фарада. Не вдаваясь в физические тонкости, произвести конденсатор такой огромной (по физическим размерам) емкости до последнего времени было трудным и бесполезным занятием. Конденсатор емкостью 1 Фарада мог занимать место приблизительно, как тумбочка. Если пересчитать емкость в Ватт-часы:
Получится 0,5*1*3*3/3600 = 0,00125 Вт*час
То есть на такой «тумбочке» электромобиль и тронуться с места не сможет.
В начале 60-х Роберт Райтмайер запатентовал модель суперконденсатора. Вместо обычных пластин он предложил делать пористые пластины, у которых площадь на пару порядков больше. А сблизить площади этих неровных пластин он предложил с помощью электролита. Чтобы через электролит не протекал ток, пластины должны иметь разную проводимость: ионную и электронную. Потом эту технологию перекупила японская компания NEC. Практически реализовать такую технологию в полном качестве удалось только с приходом нанотехнологий. Сейчас, например, для покрытия пластин используют материал графен. Пару граммов этого вещества способны покрыть футбольное поле.
Таким образом, «тумбочка» стала размером «с ноготок».
На рисунке приведен конденсатор емкостью 10 Фарад. Конденсатор побольше выглядит солиднее. По размерам он, как граненый стакан.
Преимущества суперконденсаторов
Так чем же эти «банки» лучше привычных литий-ионных аккумуляторных батарей.
- Принцип накопления энергии. В аккумуляторных батареях энергия накапливается химическим способом, поэтому имеет ограниченное количество циклов. В суперконденсаторах идет накопление электрическим методом. Количество циклов заряда/разряда огромно (более 500.000).
- Если выбрать электролит большой плотности, рабочая температура может быть от минус 50 до плюс 80-ти градусов Цельсия. Это очень важно для наших широт.
- Скорость заряда минимальна. Время на зарядку суперконденсаторной батареи большой емкости предельно малое, менее пяти минут.
- Суперконденсатор может в течение короткого времени отдать большую энергию. На нем может быстро тронуться с места даже самосвал.
- Суперконденсатор без потерь свойств может очень долго находиться в полностью разряженном состоянии (спать).
Какие электромобили можно производить, используя суперконденсатор
Помимо «хороших» свойств суперконденсаторов, есть и «плохие», которые не дают его применять, где попало, прежде всего:
- малая удельная емкость (приблизительно раз в 10 меньше, чем аккумуляторов);
- линейная характеристика напряжения на конденсаторе при разряде (в начале разряда около 3-х вольт, посередине – 1,5 Вольта, а нужно для нормального питания — 3);
- большой саморазряд (за суперконденсатор неделю может разрядиться наполовину);
- большая стоимость суперконденсатора (тот, что показан на рисунке на 1200 Фарад стоит более 3.000 рублей);
- невысокое рабочее напряжение (2,7 Вольта).
Говоря человеческим языком, масса конденсаторов значительно выше, их требуется подключать в схему последовательно, что уменьшает емкость дополнительно, увеличивает стоимость. Кроме этого, необходимы специальные схемы стабилизации питания и распределения напряжения.
Для примера, размер суперконденсатора для питания смартфона должен быть не менее пресловутого граненого стакана. Не представляется электромобиль с суперконденсаторным «туалетом» на борту. Зато такой «туалет» легко можно спрятать в грузовой машине или электротранспорте. Я не случайно привел такое сравнение. Внешний вид и размеры суперконденсаторной батареи что-то напоминают.
Масса такой батареи около 1300 килограммов.
Зарядное устройство, устанавливаемое на конечной остановке, не меньше.
Такие электробусы сейчас стали привычным транспортным средством в Минске. По характеру движения они напоминают троллейбус, немного дергаются во время старта и торможения. Это не случайно: при торможении они возвращают в батарею до 30-ти процентов энергии.
Длина маршрута этого 59-го маршрута в Минске около 12-ти километров, он подзаряжается после каждой поездки из одной конечной остановки в другую. Зарядные устройства находятся на конечных остановках. Длится заряд около 3-х минут. Водитель в это время отдыхает. Суперконденсаторные батареи производится под Минском, электробусы – в Минске. Такая небольшая длина пути до подзарядки пока адаптивна только к электротранспорту или, например, к производственным большегрузным машинам. Очень полезно, что суперконденсаторы могут «рвануть» с места груженый транспорт, быстро заряжаются при торможении. Обычный аккумулятор не способен это сделать.
Преимущество быстрого заряда существенно. Представьте, когда ночью в депо стоит куча электробусов на зарядке. Каждому подай по зарядному устройству. Суперконденсаторы утром по-быстрому зарядил – и в путь. Суперконденсаторы отлично пойдут для питания городских микроавтомобилей с небольшим дневным пробегом.
Какие перспективы, за чем будущее?
Я думаю, что будущее за соединением технологий. Это будут или аккумуляторные конденсаторы, или конденсаторные аккумуляторы. Сейчас такие технологии уже используются, например, пластины аккумуляторов покрывают графеном. Обязательно последует развитие технологий, уменьшение массы, увеличение рабочего напряжения, совершенствование элементов защиты. Поживем – увидим. То, что суперконденсаторы будут стоять в электромобилях, очевидный факт.
Источник