- Комплекты солнечных батарей для дома и дачи 220 В
- Что такое комплект солнечной электростанции для дома
- Готовые комплекты солнечных батарей (электростанции) для частного дома
- Солнечные электростанции для дома
- Цели использования
- Солнечная батарея для дома и дачи – цена и что входит в комплект
- Варианты размещения
- Виды подключений
- Виды модулей, которые мы предлагаем
- Подбор комплекта
- Солнечные электростанции представленные на нашем сайте делятся на три типа:
- Солнечные батареи своими руками. Подбор оборудования для солнечных электростанций
- Выбор контроллера
- Разновидности контроллеров
- Выбор аккумулятора
- Расчет емкости аккумуляторов
- Выбор инвертора
Комплекты солнечных батарей для дома и дачи 220 В
Производство собственного электричества — реальный и доступный способ обеспечить энергонезависимость домовладения, получать определенный гарантированный доход практически круглый год. Простое решение этого вопроса — купить комплект солнечных батарей для частного дома в компании «Чистая энергия» с бесплатной доставкой.
Что такое комплект солнечной электростанции для дома
Стандартная комплектация домашней электростанции включает несколько обязательных составляющих:
- солнечные модули разной мощности и напряжения, преобразующие солнечное излучение в электроток;
- контроллер, регулирующий уровень заряда АКБ;
- аккумуляторный блок из одной или нескольких батарей, сохраняющий полученную энергию и поддерживающий стабильное напряжение;
- инвертор, преобразующий постоянный ток в переменный с бытовым напряжением 220в.
Основной критерий выбора автономной гелиостанции — расчет оптимальных пиковых нагрузок работающих электроприборов и бытовой техники (холодильника, освещения, отопительного котла, насоса), рациональное среднесуточное энергопотребление, периодичное или постоянное использование (круглый год, дачный сезон). Правильный подсчет максимально необходимой мощности поможет подобрать оптимальный комплект солнечной электростанции для дома по разумной цене без переплат.
Компания предлагает большой ассортимент готовых комплектов автономных станций разной мощности, скомпонованных из элементов с идеально подобранными техническими характеристиками. Такой подход облегчает выбор, гарантирует успешную эксплуатацию, позволяет сэкономить на покупке, например, стоимость комплекта солнечных панелей для дачи гораздо ниже аналогичной системы для постоянного жилья.
Комплект домашней гелиостанции Энерговольт — современный подход к энергообеспечению, гарантированный доход, забота об экологии.
Источник
Готовые комплекты солнечных батарей (электростанции) для частного дома
Решение купить комплект солнечных батарей для дома с периферийным оборудованием позволит полностью обеспечить свой дом экологически чистой электроэнергией. Вы не будете зависеть от нестабильности работы централизованной сети, а при достаточно большой мощности электростанции перейти на полностью автономное электропитание, а при наличии излишек, зарабатывать на продаже электроэнергии обратно в сеть.
Солнечные электростанции для дома
Любая современная СЭС – очень надежный источник энергии. Эффективный срок службы панелей составляет более 25 лет, а отсутствие генерации ночью или в облачную погоду полностью компенсируется подачей накопленной энергии от аккумуляторов.
Еще одно огромное преимущество даже небольшой, мини солнечной электростанции – в стабильном напряжении в сети. Это существенно увеличит срок службы Вашей электроники и бытовой техники.
Цели использования
Если Вы покупаете солнечные батареи для дома, стоимость готового комплекта будет зависеть от целей, для которых приобретается СЭС. Таковых может быть три:
- Обеспечение полной автономности снабжения электроэнергией загородного дома или дачи. Особенно актуально решение этой проблемы там, где классические электросети отсутствуют либо подают энергию с перебоями.
- Желание использовать альтернативный источник питания не только для освещения, но и для обогрева, чтобы не зависеть от сезонного включения/выключения центрального отопления.
- Получение возможности заработать на продаже государству избытков.
Любой из этих вариантов предпочтительнее зависимости от государственной политики формирования цен на электричество и качества работы изношенных электросетей.
Солнечная батарея для дома и дачи – цена и что входит в комплект
В стандартный комплект готового комплекса «под ключ» входят:
- фотоэлектрические батареи в нужном количестве и соответствующей совокупной мощности;
- солнечные инверторы для обеспечения бесперебойной работы системы;
- контроллеры заряда АКБ и сами аккумуляторы (кроме сетевых электростанций);
- периферийное оборудование для подключения и защиты – кабеля, соединители, диоды, управляющая электроника, соответствующие крепежные элементы.
Для автономных СЭС применяется полный комплект, и цена увеличится на стоимость аккумуляторов. Для сетевых станций АКБ не требуется, но в перечень необходимо добавить двух тарифный счетчик. Гибридные и комбинированные варианты сочетают в себе возможности автономной работы и соединения с сетью.
Кроме того, покупая солнечную батарею для частного дома, следует иметь в виду, что цена готового комплекта будет увеличиваться, пропорционально совокупной мощности станции.
Варианты размещения
Существует несколько основных вариантов размещения комплектов солнечных батарей для дачи и дома, каждый из которых выбирается в зависимости от ряда обстоятельств.
- На земле – при наличии личного или арендованного участка достаточной площади. Преимущества – оптимальное размещение большого количества батарей с потенциальной возможностью изменения их направления на солнце.
- На крышах зданий – применяется в основном в условиях плотной застройки и отсутствия подходящего участка для удобного размещения. Главное достоинство – экономия места и минимальное количество кабельных линий.
- На воде – используется при наличии доступных водных пространств. Основным плюсом следует назвать повышение среднего КПД установок за счет естественного охлаждения панелей.
- Мобильное – для небольших комплектов, используемых для зарядки аккумуляторов транспортных средств, в длительных туристических походах и т.д. Преимущество – в отсутствии привязки к месту за счет малых габаритов и веса.
Если солнечные электростанции для дома размещаются на высоких крышах с большим углом наклона, стоимость комплекта немного увеличится за счет сложности выполнения работ на высоте.
Виды подключений
Отдельные панели можно соединять в готовые комплекты тремя способами:
- параллельно – с целью повышения силы тока при неизменном напряжении на выходе;
- последовательно – при желании повысить выходное напряжение (например, с 12 до 24 вольт), что позволяет эффективнее использовать солнечную энергию, уменьшив электрические потери;
- по смешанной параллельно-последовательной схеме – в достаточно больших СЭС применяется для получения любых требуемых электрических параметров тока и напряжения на выходе.
Для вывода на внешние устройства переменного тока в 220 вольт используется инвертор.
Виды модулей, которые мы предлагаем
Для солнечной электростанции у нас Вы можете купить монокристаллические и поликристаллические панели ведущих мировых производителей и брендов – Хевел, DELTA, ФСМ, One-Sun.
Все линейки фотоэлектрических батарей имеют сертификаты соответствия для продажи в России, Европе и США и обладают следующими преимуществами:
- максимальной категорией качества Grade A по международным стандартам IEC61215 и IEC61730;
- высочайшим классом влагостойкости IP67;
- гарантией от производителя;
- наличием сверхпрочного закаленного защитного стекла;
- автоматической спайкой на роботизированной линии;
- сниженным сопротивлением на токопроводящих шинах;
- оригинальным дизайном.
Подбор комплекта
Осуществляем точно рассчитанные подборы готовых комплектов батарей для солнечных электростанций мощностью от 0,3 до 44 кВт и более. При желании, клиент может выбрать и купить вместо традиционных АКБ литиевые аккумуляторы LFP или LTO.
Солнечные электростанции представленные на нашем сайте делятся на три типа:
- Автономные. Применяются где нет централизованного электроснабжения. В состав автономных электростанций входят солнечные батареи, инверторы, контроллеры заряда, аккумуляторы и сопутствующие товары для подключения и защиты.
- Комбинированные. Имеют возможность использовать солнечные батареи совместно с централизованной электросетью или генератором. В состав комбинированных электростанций входят солнечные батареи, комбинированные инверторы с функциями ИБП со встроенные контроллером заряда или отдельным, аккумуляторы и сопутствующие товары для подключения и защиты.
- Сетевые. Сетевые комплекты могут подмешивать электроэнергию в централизованную сеть для экономии электроэнергии или для продажи в сеть. Как правило не имеют в комплекте аккумуляторов, в связи с чем не могут работать без опорной централизованной сети. В состав сетевых электростанций входят сетевые инверторы, солнечные батареи и сопутствующие товары для подключения и защиты.
Состав комплектов солнечных батарей, модели комплектующих и цены могут незначительно меняться, актуальную информацию можно получить по ссылке на google docs или у нашего специалиста по телефону и с помощью формы обратной связи.
Представленные комплекты солнечных батарей достаточно «гибкие» и если вы хотите что-то поменять, например заменить аккумулятор на другую модель или вам требуется изменить длину кабеля — мы с радостью соберем и подготовим комплект специально для вас, с учетом всех необходимых деталей, останется только по месту установить, подключить и выполнить несложную настройку.
Если вы не хотите заниматься установкой и подключением оборудования, вы можете заказать у нас услугу монтажа «под ключ». Мы приедем, привезем оборудование, установим и проведем вводной инструктаж по использованию солнечной электростанции.
Источник
Солнечные батареи своими руками. Подбор оборудования для солнечных электростанций
О том, что такое солнечные батареи, как рассчитывать количество фотоэлектрических элементов и какие разновидности полупроводниковых ячеек можно использовать при строительстве солнечных электростанций, мы рассказывали в первой части данной статьи. Сегодня же мы поговорим о том, какое еще оборудование должно входить в комплект домашней автономной системы электроснабжения и как выбирать оптимальный для вашего дома солнечный инвертор, аккумулятор и контроллер.
Выбор контроллера
Солнечный контроллер, подключенный к солнечным батареям и аккумулятору, обеспечивает своевременную подзарядку аккумуляторной батареи (АКБ), защищает ее от преждевременной деградации и выполняет следующие функции:
- Автоматическое подключение АКБ к фотоэлектрическим модулям для подзарядки.
- Автоматическое отключение аккумулятора от фотоэлектрических панелей (ФЭП) при достижении максимального уровня зарядки (защита аккумулятора от перезаряда).
- Автоматическое отсоединение АКБ от потребителей электроэнергии при достижении недопустимого уровня разряда (защита аккумулятора от глубокого разряда).
- Повторное подключение нагрузки к аккумулятору при восполнении уровня его заряда.
Контроллер способен автоматически отключать нагрузку, подключаемую на выход «Load» устройства. К этому выходу подключаются маломощные потребители постоянного тока (светодиодные лампы).
Все потребители переменного тока (бытовые электроприборы, электроинструмент и т. д.) не имеют прямого подключения ни контроллеру, ни к солнечным панелям. Они через инвертор подключаются к аккумуляторной батарее.
При такой схеме подключения от глубокого разряда аккумулятор защищается не контроллером, а инвертором. К вопросам переразряда АКБ и способов защиты от него с помощью солнечного инвертора мы вернемся чуть позже.
Разновидности контроллеров
Основная задача солнечного контроллера состоит в том, чтобы обеспечивать режимы зарядки аккумуляторной батареи (силу тока и уровень напряжения), соответствующие типу АКБ и ее состоянию. Простейший контроллер типа «on-off» способен выполнять лишь 2 операции: автоматически включать или отключать аккумулятор от фотоэлектрических панелей. Но простейшие устройства активно вытесняются с рынка более продвинутыми контроллерами. Наиболее популярны сегодня контроллеры двух типов: ШИМ (PWM) – устройства широтно-импульсной модуляции, и МРРТ – устройства отслеживания точки максимальной мощности. Рассмотрим особенности перечисленных контроллеров.
Контроллеры типа «on-off»
Рассмотрим рабочий цикл простейшего контроллера типа «on-off», который подключен к автомобильному аккумулятору – 12 В. Когда напряжение аккумулятора упадет ниже номинала, а напряжение СБ достигнет зарядных значений, контроллер подключит аккумулятор к солнечной батарее. В этот момент начнется процесс зарядки АКБ (накопления), который будет продолжаться, пока напряжение на аккумуляторе не вырастет до 14,4 В. Определив, что напряжение на клеммах АКБ достигло указанного значения, контроллер отключит аккумулятор от солнечных батарей. Затем цикл повторится. Контроллер типа «on-off» не позволяет полностью зарядить аккумуляторную батарею, ведь для полного заряда на ее клеммы необходимо подавать напряжение – 14,4 В, в течение нескольких часов (этот период называется стадией абсорбции). Максимальный уровень зарядки при таком цикле не превысит 60–70%, а регулярный недозаряд приведет к значительному сокращению срока службы АКБ. Как видим, недостатки контроллеров типа «on-off» – налицо.
Контроллеры ШИМ
Контроллеры ШИМ позволяют заряжать АКБ на 100% благодаря оптимизированному рабочему циклу, который подразделяется на 4 стадии.
- На начальной стадии зарядки аккумулятор получает всю мощность, генерируемую фотоэлектрическими панелями.
- Стадия накопления характеризуется постепенным ростом напряжения на клеммах АКБ. Накопление заряда осуществляется при постоянной силе тока.
- Когда напряжение на клеммах АКБ достигнет своего максимального значения, контроллер переведет зарядные параметры в режим абсорбции. Подаваемое напряжение на этой стадии остается постоянным, а зарядный ток постепенно уменьшается. Это позволяет аккумулятору накопить максимальное количество энергии, избежав перегрева и закипания.
- Уравновешивающий заряд (режим float). На этой стадии аккумулятор поддерживается в заряженном состоянии.
Параметры зарядного тока и напряжения устанавливаются контроллером автоматически.
У контроллеров отключение нагрузки происходит при 11,2 В, повторное подключение – 12,5 В. Заряд идет до 14,4 В максимальным током, потом начинается ограничение на этом напряжении ШИМ. После стадии насыщения напряжение снижается до 13,7 В (стадия поддержки float).
ШИМ контроллеры рекомендуется использовать в системах с небольшой мощностью солнечных батарей (ориентировочно: от 100 Вт до 500 Вт). Это условие вполне соответствует параметрам домашних фотоэлектрических панелей. Контроллеры ШИМ постепенно вытесняются с рынка более совершенными устройствами МРРТ, изначально создаваемыми для мощных солнечных батарей.
MPPT при мощностях СБ менее 500 Вт применять не всегда имеет смысл (хотя, это вопрос спорный: бывают случаи когда это можно и нужно делать). Тенденции развития контроллеров таковы, что скоро ШИМ контроллеры будут вытеснены MPPT даже на малых мощностях.
Контроллеры МРРТ
Алгоритм работы контроллеров МРРТ следующий: устройство в реальном времени отслеживает параметры электрического тока на выходе из солнечной батареи, определяя значения в паре ток-напряжение, при которых мощность, получаемая от фотоэлектрических панелей, будет максимальна. Одновременно контроллер отслеживает стадию зарядки аккумулятора и подает на его клеммы ток с необходимыми параметрами.
Автоматическое определение точки максимальной эффективности заряда помогает увеличить коэффициент использования солнечной энергии на 20-30%. Контроллеры МРРТ позволяют подключать к системе солнечные батареи, номинальное напряжение которых значительно выше напряжения АКБ. Это гарантирует, что даже в пасмурную погоду напряжение СБ будет превышать зарядное напряжение аккумулятора. То есть в солнечный день контроллер будет автоматически понижать высокое входное напряжение, а при недостатке света солнца АКБ будет заряжаться за счет запаса по напряжению СБ.
Для того чтобы правильно выбрать контроллер для той или иной солнечной электростанции, необходимо знать характеристики источника тока и аккумулятора. Но есть по этому поводу и общие рекомендации, разработанные производителями:
- Контроллеры МРРТ, учитывая их сравнительно высокую стоимость, следует использовать при мощности солнечных батарей – от 500 Вт и выше (это будет экономически целесообразно).
- Контроллер ШИМ подойдет для солнечных батарей небольшой мощности, у которых номинальное напряжение соответствует номиналу АКБ (для 12-ти вольтовых АКБ подходят панели с номиналом 17-22 В, а для 24-ти вольтовых АКБ – панели номиналом 34-45 В).
- Контроллер МРРТ разработан для СБ, напряжение которых гораздо выше напряжения АКБ (это позволяет создавать запас напряжения и обеспечивать заряд аккумулятора даже в пасмурную погоду).
Недостаток мощности в системах, работающих на контроллерах ШИМ, можно компенсировать установкой дополнительной солнечной панели. Это может быть дешевле, чем установка более производительного контроллера МРРТ.
По поводу преимуществ MPPT перед ШИМ: не всегда и не везде они есть, но в большинстве случаев добавка к выработке будет. Нужно только смотреть – стоит ли такая добавка больше, чем разница в стоимости MPPT и ШИМ контроллера.
Выбор аккумулятора
Выбирая аккумуляторы для солнечных батарей, пользователи FORUMHOUSE руководствуются разными соображениями:
- Те, у кого есть средства и возможности, приобретают долговечные и дорогостоящие щелочные аккумуляторы – никелево-кадмиевые (НК) или никелево-железные (НЖ).
- Кто-то приобретает специализированные гелевые батареи, изготовленные по технологии GEL, которые в сравнении с привычными стартерными АКБ служат гораздо дольше, но и стоят дороже.
- Те же, кто предпочитает наиболее доступный вариант, используют стартерные автомобильные АКБ.
Учитывая, что выбор АКБ во многом зависит от реальных возможностей владельца СБ, то давать какие-либо рекомендации в этом плане очень трудно. Но перечислить преимущества и недостатки различных батарей следует.
Кислотные (автомобильные) АКБ
Стартерные АКБ – самые дешевые и доступные для большинства покупателей батареи. Несмотря на довольно внушительную емкость, эти АКБ являются буферными: они изначально рассчитаны на кратковременный неглубокий разряд и быструю подзарядку до полной емкости. Они совершенно не предназначены для работы в условиях циклического режима и глубокой разрядки. Отсюда вытекают недостатки представленных аккумуляторов.
В автомобильных АКБ буферный режим работы! Поэтому в автономке с циклическим режимом работы (неважно – есть 3-х стадийная зарядка или нет её) максимум – год работы, и хана стартерным АКБ. Я основываюсь на опыте очень большого экопоселения, в котором нет электросетей. Более сотни семей пробовали свинцовые АКБ (естественно, начиная со стартерных). Результат всегда один и тот же: при постоянном использовании батареи хватает на год, при сезонном – 2-3 года могут продержаться.
В таблице представлена зависимость напряжения холостого хода от степени разряда свинцово-кислотной батареи.
Таблица дает примерное понимание величины напряжения, при котором следует отключать нагрузку от АКБ (напряжение отсечки). Примерное оно потому, что напряжение аккумулятора, подключенного к нагрузке, всегда ниже напряжения холостого хода батареи. Параметры холостого хода замеряются, спустя несколько часов после отключения нагрузки. Устанавливая напряжение отсечки, лучше руководствоваться рекомендациями производителей АКБ и показаниями контроллера (большинство устройств показывает процент заряженности батареи).
Посмотрите паспорт на свою батарею. Я вчера смотрел информацию о том, какими токами ее можно разряжать и до каких значений.
Щелочные аккумуляторы
Щелочные АКБ рассчитаны на циклический режим работы (что оптимально для автономных систем электроснабжения): они способны постепенно отдавать свою энергию, пока не наступит их полный разряд.
И чем глубже будет разряжена такая батарея, тем большую емкость она наберет во время подзарядки (это называется эффектом памяти).
Заряжать и разряжать щелочной аккумулятор порциями нельзя – только «от и до». Зато при правильной эксплуатации (помимо зарядки/разрядки она подразумевает промывку банок и замену электролита раз в сезон) щелочные АКБ служат по 20 лет.
Существенный недостаток щелочных аккумуляторов состоит в том, что при малых токах они плохо заряжаются или не заряжаются вовсе. Решить подобную проблему можно, правильно рассчитав мощность солнечных панелей и установив подходящий контроллер.
Вывод: если есть такая возможность, то для солнечных панелей лучше приобретать щелочные аккумуляторы.
У нас тут четверть века поселок без централизованного энергоснабжения, и все жители используют аккумуляторы – 12 В. Причем всегда, всеми правдами и неправдами, добывали щелочные (НК и НЖ). У меня сейчас работают десять банок ТНЖ-250 от погрузчика, списанные еще в начале 90-х. В них примерно треть паспортной емкости, но мне этого вполне достаточно, а емкость эта уже много лет не меняется.
Гелевые аккумуляторы
Если недостатки автомобильных аккумуляторов для потребителя неприемлемы, а приобрести подходящий щелочной аккумулятор у него нет возможности, то выбор делается в пользу свинцово-кислотных гелевых батарей. По своим характеристикам они оптимально подходят для автономных систем солнечной и ветровой энергетики, не требуют обслуживания, а срок их службы составляет 10 лет. Недостаток гелевых батарей их высокая стоимость.
Существуют еще литий-железо-фосфатные АКБ (литий-ионные). Они, кстати, признаны самыми лучшими батареями для автономных систем.
Беря во внимание «заоблачную стоимость этих устройств, в самодельных системах их используют лишь единицы.
Расчет емкости аккумуляторов
Рассчитать требуемую емкость аккумуляторных батарей для автономной системы электроснабжения довольно просто. Для этого нам понадобятся следующие исходные параметры:
- Емкость аккумуляторов (А*ч), которые планируется использовать в системе.
- Напряжение на рабочих клеммах АКБ (В).
- Суммарная нагрузка на аккумуляторы (Вт).
Чтобы вычислить параметры АКБ, которая понадобится для вашей системы, емкость аккумулятора и нагрузку на батарею целесообразно перевести в одну систему измерений. То есть Ампер*час нам нужно перевести в кВт*час.
Переводить емкость АКБ в количество энергии принято следующим образом: нужно умножить номинальное напряжение батареи (12 В) на ее паспортную емкость (190А*ч).
12(В) * 190(А*ч) = 2280 Вт*ч = 2,28 кВт*ч.
Расчеты показывают, что одна свинцово-кислотная автомобильная батарея емкостью 190А*ч при разряде сможет отдать примерно 1,14 кВт*ч электроэнергии, разрядившись на 50% (с учетом потерь электроэнергии это значение можно округлить до 1 кВт*ч). Щелочной аккумулятор с аналогичной емкостью (который не боится полного разряда) за один цикл сможет отдать в 2 раза больше электроэнергии.
Стартерные АКБ лучше до конца не разряжать: рекомендую только на 50% от полной емкости.
Много это или мало – все зависит от нагрузки на батарею. Если нагрузка на 12-ти вольтовый аккумулятор емкостью 190 А*ч будет равна 100 Вт, то все потребители, подключенные к батарее, смогут непрерывно работать в течение 10-ти часов. После чего аккумулятору потребуется обязательная подзарядка.
Рассчитывая параметры АКБ, следует соотносить их с техническими характеристиками солнечных панелей и инверторов. Всегда необходимо учитывать неизбежные потери электричества и природные факторы:
- Ток, потребляемый солнечным инвертором без нагрузки – зависит от КПД устройства (если инвертор, подключаемый к 12-ти вольтной АКБ, без нагрузки потребляет 2А, то за 10 часов работы он потребит 20А*ч, или 0,24 кВт).
- Сопротивление проводников.
- Естественное снижение паспортной емкости АКБ в процессе эксплуатации (когда показатель емкости снижается до 60% от первоначальной величины, ресурс батареи исчерпан).
- Потери, отражающие КПД аккумулятора (свинцово-кислотные АКБ в процессе зарядки потребляют примерно на 20% больше электроэнергии, чем потом отдают) – эти потери должны быть учтены при расчете мощности фотоэлектрических панелей.
- Неравномерное количество солнечных дней в разное время года и т. д.
Внимательного расчета требуют аккумуляторы, к которым подключаются приборы с большими пусковыми токами.
В системе с холодильником АБ должна быть емкостью не менее 200-400 А*ч. Такие АБ выдерживают, как минимум, десятки ампер без существенной просадки напряжения.
На практике для расчета емкости АКБ целесообразно использовать онлайн калькуляторы солнечной энергии, учитывающие совокупность перечисленных параметров.
Увеличить емкость можно, используя несколько аккумуляторных батарей, соединенных параллельно.
Если батарей много, то следует использовать последовательно-параллельное соединение.
Выбирая тип соединения АКБ, нельзя выпускать из вида два немаловажных параметра: выходное напряжение контроллера и входное напряжение солнечного инвертора. Они должны соответствовать суммарному напряжению аккумуляторных батарей.
Объединяя несколько аккумуляторов в одну батарею, следует придерживаться еще одного правила.
Нельзя ставить более 4-х групп в параллель, а по-хорошему – не более 3-х. Да, при просадке напряжений «умная» зарядка компенсирует «плохую» батарейку, но процесс старения АКБ во всей батарее подстёгивается: одна «паршивая овца» убивает остальные батарейки.
Раз в месяц желательно тестером проверять емкость всех аккумуляторов. Это поможет вовремя обнаружить испорченный аккумулятор и принять меры для того, чтобы избежать угрозы разбаланса.
Температура в помещении, где установлены аккумуляторы, должна соответствовать определенным значениям. Если, к примеру, щелочные никель-кадмиевые АКБ менее прихотливы (их можно использовать при температурах от -20ºС до +45ºС без потери емкости), то для эксплуатации свинцово-кислотных (СК) аккумуляторов оптимальная температура окружающей среды равна +20ºС. А повышение эксплуатационной температуры герметичных свинцово-кислотных батарей на каждые 10ºС сокращает срок службы АКБ в 2 раза (инструкция по эксплуатации свинцово-кислотных батарей п. 10.10).
Место установки АКБ – в доме, поэтому искал герметичные батареи. Сведения об условиях эксплуатации: обычно при постоянной температуре в 30ºС срок жизни СК АКБ вдвое меньше, чем при 20ºС.
Для того чтобы уберечь аккумуляторы от глубокого разряда в облачные дни, батареи можно периодически подзаряжать от другого источника (от дизельного генератора или ветрогенератора).
Системы автономного электроснабжения, работающие от солнечных панелей и генератора, принято называть гибридными. Гибридные электростанции являются самым оптимальным решением для организации автономного электроснабжения.
Выбор инвертора
Основная функция инвертора заключается в преобразовании стандартного напряжения и постоянного тока аккумуляторных батарей в бытовой переменный ток напряжением 220В. График напряжения на выходе из инвертора имеет синусоидальную форму. И в зависимости от того, какие потребители будут подключены к питанию от СБ, инвертор должен выдавать напряжение либо с правильной синусоидальной формой графика (чистый синус), либо с модифицированным синусом (меандр). Как именно ведет себя график напряжения на выходе из инвертора, зависит от особенностей устройства.
Некоторые электроприборы стабильно работают и на «модифицированном синусе»: электронагреватели, компьютеры, устройства с импульсными источниками питания (определенные модели телевизоров). Опытные пользователи нашего портала рекомендуют приобретать инверторы, дающие на выходе «чистый синус». Форма выходного сигнала указывается в характеристиках устройства.
Выбирая инвертор, следует обращать внимание не только на форму выходного сигнала, но и на мощность устройства.
- Номинальная мощность (рабочая) должна быть на 25-30% выше суммарной мощности постоянно задействованных в работу потребителей.
- Пиковая мощность инвертора должна превышать мощность возможной кратковременной нагрузки на прибор. Речь идет о нагрузке, которая возникнет в случае одновременного включения нескольких потребителей, обладающих большой пусковой мощностью (холодильник, электродвигатель насоса и т. д.).
- В характеристиках инвертора указывается еще и максимальная мощность. Она меньше пиковой, но больше номинальной. Этот параметр обозначает допускаемую кратковременную нагрузку, при которой устройство проработает в течение нескольких минут (5-10 мин) и не выйдет из строя.
Пусковой ток холодильника может не потянуть инвертор, но у меня, к счастью, мощности инвертора вполне хватает. Мощность постоянная – 2,5 кВт, пиковая – 4,8.
КПД инвертора также имеет большое значение при выборе устройства. Он определяет потери электроэнергии во время работы устройства и может варьироваться в следующих пределах: 85-95% (в зависимости от модели). Рекомендуется выбирать устройство с КПД – от 90% и выше. Ведь за инвертор мы заплатим один раз, а за его низкий КПД платить придется постоянно.
Инверторы, подключаемые напрямую к свинцово-кислотным аккумуляторам, должны защищать АКБ от глубокого разряда. В большинство современных инверторов подобная функция встроена. Порог отсечки нагрузки может быть установлен заводом-изготовителем, а может регулироваться пользователем.
Нижний порог отсечки нагрузок от АКБ – 10В-10,5В (в 12-ти вольтовых системах) стандартен По сути, это аварийная защита от глубокого разряда батареи. Теперь про регулируемые настройки: есть инверторы с регулируемыми настройками, есть – без настроек. Бюджетные модели имеют меньше функционала, дорогие – больше. Потребитель сам определяет, что ему больше нужно и по какой цене.
Помимо обычных преобразователей, в системах автономного питания часто используются гибридные и комбинированные инверторы. Комбинированные – способны совмещать функции контроллера и инвертора. Гибридные – позволяют осуществлять питание потребителей как от сети, так и от аккумуляторов.
О сечениях проводников, которые соединяют различные элементы автономной системы электроснабжения, о параметрах защитных устройств и о способах монтажа используемого оборудования вы узнаете в заключительной часте настоящей статьи.
Какими соображениями руководствуются пользователи FORUMHOUSE, выбирая кислотные или щелочные аккумуляторы для автономных систем, вы можете прочитать в соответствующем разделе. О том, как правильно выбрать подходящий контроллер или автономный инвертор для систем, работающих от солнечных батарей, можно узнать, посетив темы нашего сайта, открытые для обсуждений. А о самых популярных способах, позволяющих решить проблему отсутствия электричества, вы узнаете из статьи, основанной на опыте пользователей нашего портала.
Источник