Коэффициент использования ветра различными ветрогенераторами

Эффективность КПД ветрогенератора: способы увеличения, конструкция и рабочие характеристики ветряка

Обновлено: 16 января 2021

Существующие конструкции ветрогенераторов пока не могут составить полноценную конкуренцию наиболее эффективным методам производства электроэнергии. Причина этого заключается в невысокой производительности, которая, в конечном счете, является следствием низкого КПД ветрогенератора.

Здесь насчитывается масса причин, сочетание которых уменьшает эффективность устройства, многие из них относятся к конструктивной области, другие являются тонкими эффектами, но все вместе они образуют чрезвычайно устойчивую преграду на пути к повышению основных рабочих параметров. Вопрос довольно непростой и заслуживает более подробного рассмотрения.

Рабочие характеристики ветряка

КПД не является единственным качественным показателем работоспособности ветрогенератора. Примечателен факт, что для конечного пользователя сам по себе КПД не представляет практического интереса, поскольку он является слишком обобщенным понятием. Для владельца устройства гораздо интереснее более конкретные и адресные параметры:

  • мощность
  • производительность
  • минимальная и максимальная скорость ветра
  • тип ротора
  • ремонтопригодность
  • высота мачты

На практике может возникнуть интерес и к другим характеристикам установки, в зависимости от степени их влияния на состояние и результаты работы устройства. Для промышленных образцов, изготовленных на заводе, ознакомление с подробными техническими характеристиками не составляет труда — они все указаны в паспорте устройства.

Другое дело, если ветряк создан самостоятельно. Тогда опираться даже на расчетные данные нет смысла, поскольку на практике они могут не подтверждаться и значительным образом отличаться от проектных. Поэтому необходимо всячески тестировать вновь созданный ветрогенератор, испытывая и снимая показания на разных скоростях ветра, режимах работы и прочих условиях функционирования.

Читайте также:  Для чего применяют ветрогенераторы

От чего зависит КПД ветрогенератора?

Как уже говорилось, КПД ветрогенератора является производным от его технического состояния, вида турбины, конструктивных особенностей данной модели. Из школьного курса физики известно, что КПД — это отношение полезной работы к общей работе. Или отношение энергии, затраченной на выполнение работы, к энергии, полученной в результате.

В этом отношении возникает интересный момент — используемая энергия ветра получена совершенно бесплатно, никаких усилий со стороны пользователя приложено не было. Это делает КПД чисто теоретическим показателем, определяющим чисто конструктивные качества устройства, тогда как для владельцев в большей степени важны эксплуатационные характеристики. То есть, возникает ситуация, в которой КПД не столь важен, все внимание отводится чисто практическим задачам.

Тем не менее, при изменениях рабочих параметров в ту или иную сторону, автоматически меняется и КПД, что свидетельствует о его взаимосвязанности с общим состоянием устройства.

Коэффициент использования энергии ветра

Следует отметить, что для ветрогенераторов существует свой, специфический показатель эффективности — КИЭВ (Коэффициент Использования Энергии Ветра). Он обозначает, какой процент воздушного потока, проходящего в рабочем сечении, непосредственно воздействует на лопасти ветряка. Или, если говорить более наукообразно, он демонстрирует отношение мощности, полученной на валу устройства, к мощности потока, воздействующего на ветровую поверхность рабочего колеса. Таким образом, КИЭВ является специфическим, применительным только для ветрогенераторов, аналогом КПД.

Некоторые специалисты утверждают, что в теоретических исследованиях термин КПД для ветряков вообще неприменим, вместо него следует использовать именно КИЭВ.

На сегодняшний день значения КИЭВ от изначального 10-15 % (показатели старинных ветряных мельниц) возросли до 356-40 %. Это связано с усовершенствованием конструкции ветряков и появлением новых, более эффективных материалов и технических деталей, узлов, способствующих уменьшению потерь на трение или прочие тонкие эффекты.

Теоретические исследования определили максимальный коэффициент использования энергии ветра равным 0,593.

Какие конструкции имеют наивысший КПД?

На сегодня наивысший КПД горизонтальных ветровых установок, обладающих большей эффективностью, чем вертикальные ветряки, равен 0,4. Для вертикальных устройств среднее значение считается равным 0,38, т.е. показатели близки и не находятся на большом удалении друг от друга. Периодически появляются сообщения о разработках устройств, КПД которых превышает существующие показатели в 2 или более раз, что весьма сомнительно и не подтверждается более ничем, кроме голословных утверждений журналистов, плохо представляющих себе предмет.

Тем не менее, устройства с заметно возросшей эффективностью существуют. Они созданы в разных конструкционных вариантах, есть горизонтальные или вертикальные установки с повышенной производительностью, мощностью, остальными параметрами. Большинство таких устройств являются маломощными комплексами, предназначенными для использования в отдаленных районах и обеспечивающие отдельные дома или участки.

Для России важно создание именно таких устройств, так как потребности в энергоснабжении имеются только в труднодоступных и отдаленных регионах. Монтаж больших промышленных станций там не всегда возможен или нерентабелен.

Известны конструкции изобретателей Онипко, Третьякова и многих других конструкторов, имеющие оригинальные и элегантные варианты увеличения производительности и, соответственно, КПД. Большинство из них пока еще находятся в стадии разработки или подготовки к массовому производству, так как активная работа в этом направлении начата относительно недавно, еще не успела полностью реализоваться в виде промышленных изделий.

Способы увеличения КПД

Для того, чтобы увеличить КПД ветрогенератора, надо изменить в положительную сторону его рабочие или эксплуатационные характеристики. В первую очередь, надо повысить чувствительность крыльчатки к слабым и неустойчивым ветрам. Россия считается самой богатой ветровыми ресурсами страной, но это только из-за большой площади. Средние показатели в нашей стране относительно невысокие, скорости потока слабые или средние. Это вынуждает изыскивать пути повышении эффективности крыльчатки.

Одним из интересных предложений в этой области является «лепестковый парус», разработанный Евгением Цукановым. Он предложил идею создания своеобразной односторонней мембраны для воздушного потока, свободно пропускающей ветер в одну сторону и являющейся плотной непроницаемой преградой для потока обратного направления.

Согласно разработке Цуканова, полотно лопастей состоит из сетки, покрытой лепестками. Они прикреплены одной кромкой к сетке, свободно свисают вниз, частично перекрывая друг друга. При фронтальном направлении лепестки прижимаются к сетке, образуя непроницаемую поверхность, принимающую энергию ветра в полном объеме. Если направить поток с обратной стороны, лепестки под действием ветра поднимаются и пропускают воздух без сопротивления.

Этот вариант требует некоторых промышленных мероприятий, в частности, создании технологических линий по производству подобного полотна, но сама по себе идея весьма удачно позволяет устранить воздействие ветра на обратные стороны лопастей, что очень увеличит КПД вертикальных конструкций и позволит получить от них совершенно другие результаты.

Существуют и другие способы, например, использование диффузоров или защитных колпаков, отсекающих поток с противодействующих поверхностей. Все эти варианты конструкции имеют свои достоинства и недостатки, но, в целом, они намного эффективнее традиционных образцов, поэтому нуждаются в активной доработке, запуске в промышленное производство.

Источник

Разработка вопросов энергосбережения за счет использования ветроэнергетической установки

Главная > Дипломная работа >Физика

Общие сведения по использования энергии ветра

Энергия ветра уже тысячелетиями используется как на суше, так и на море. Первые сведения о древних египетских парусных судах уходят к третьему тысячелетию до н.э., а расцвет парусного мореходства приходится на середину прошлого века. На суше ветряные двигатели впервые появились в Персии, где за счет энергии ветра приводились в действие водяные насосы для полива. В этих устройствах использовались полотняные паруса на вертикальной оси.

В нескольких районах Европы, сначала во Франции, в XII веке появились ветряные мельницы для размола зерна, у которых ветроколесо устанавливалось на горизонтальной оси. Первая мельница была построена в 1393 году в Германии, откуда пошло распространение в другие страны. В XIV в. голландцы широко использовали ветряные мельницы для осушения болот и озер. В этот же период появились усовершенствованные конструкции мельниц, применение которых продолжалось до середины прошлого столетия. Так, в Дании суммарная мощность этих установок с общим числом более 30 тысяч составляла примерно 200 МВт.

В конце XIX века в России действовало около 250 тыс. ветряных мельниц общей мощностью примерно 600 МВт. В 1889 г. на ярмарке в Нижнем Новгороде демонстрировались два ветроагрегата мощностью 36,8 кВт каждый. В XX столетии в связи с широким внедрением электричества растет интерес к ветроэлектрическим агрегатам. В период 1890-1908 гг. профессор Лякур разработал более эффективный и быстроходный ветроагрегат для производства электрической энергии. В Асхове ветроколесо диаметром 22,85 м с четырьмя лопастями было установлено на стальной мачте высотой 24,38 м. Установка стала первым примером преобразования энергии ветра в электрическую энергию.

В США в 1920-1930-е годы активно разрабатывались ветроэлектрические агрегаты. Так, компания «Джекобс винд электрик» ввела в конструкцию своих ветроагрегатов два важных усовершенствования: трехлопастный винт, который позволил устранить вибрации, возникающие у двухлопастных винтов, и центробежный шариковый регулятор угла поворота лопастей, обеспечивающий переход их во флюгерное положение при больших скоростях ветра.

В Великобритании в 1920-е годы появился интерес к ветроэлектрическим установкам небольшой мощности. Были опубликованы результаты испытаний ветроагрегатов мощностью от 250 Вт до 10 кВт.

В СССР в 1931 г. был построен самый крупный в мире ветроагре-гат для получения электроэнергии. Установка мощностью 100 кВт использовалась как дополнительный источник энергии и была включена в сеть тепловой электростанции Севастополя. Ветроагрегат имел трехлопастное ветроколесо диаметром 30 м. Установка проработала 10 лет, подавая электроэнергию в Крымскую энергосистему, была разрушена во время войны в 1942 году.

Первый этап развития ветроэнергетики в нашей стране характеризуется в основном теоретическими исследованиями. Крупнейший русский ученый Н.Е.Жуковский и его ученики В.П.Ветчинкин, Г.Х.Сабинин, Г.Ф.Проскура и др. создали теоретические основы расчета ветродвигателей, положившие начало научному развитию ветротехники. В 1930-е годы созданы аэродинамические профили высокого качества для лопастей ветроколес, проводились испытания различных конструкций ветроагрегатов и установок, совершенствовались методы их расчета и проектирования.

В 1950-е годы с развитием электроэнергетики и в первую очередь сельской электрификации темпы развития ветроэнергетики замедлились. Однако с 1975 г. количество эксплуатируемых ветроустановок во многих странах вновь стало расти. Серийно начали выпускаться электрические ветроагрегаты в Великобритании, Германии, Дании, Канаде, СССР, США, Франции и других странах. На сегодняшний день в основном решены технические проблемы преобразования ветровой энергии и доказана возможность развития ветротехники как источника энергии.

В настоящее время более активно решаются проблемы ветроиспользования, определения энергоэкономических показателей ветроустановок, их проектирования и применения.

10.2 Основы теории использования энергии ветра

Воздушный поток, как и всякое движущееся тело, обладает кинетической энергией. Одним из видов использования кинетической энергии является превращение ее в механическую работу.

Кинетическая энергия Е в воздушного потока, имеющего скорость v, определяется по выражению

где m – масса движущегося воздушного потока;

где V – объем массы воздуха, протекающего за секунду через сечение F со скоростью v.

Количество энергии ветра, протекающего за 1 с через поперечное сечение:

Энергия ветра изменяется пропорционально кубу его скорости и поперечного сечения.

Отличительным свойством ветра является его повсеместность. Однако техническое использование энергии ветра во многих случаях крайне затруднено из-за низкой плотности воздуха (она в 800 раз меньше плотности воды). Для получения значительной мощности необходимо ветроколесо очень больших размеров, т.к. ветроагрегат может преобразовать только часть потенциальной энергии, определяемой коэффициентом использования энергии ветра x. При этом частота вращения ветроколеса должна регулироваться из-за непостоянства скорости ветра во времени и вырабатываемая мощность, изменяясь пропорционально третьей степени скорости ветра, будет иметь большую амплитуду колебаний.

Мощность, развиваемая ветроколесом

Мощность эта определяется как кинетическая энергия ветра, действующая в единицу времени, с учетом коэффициента ее использования:

где — коэффициент использования энергии ветра.

Поверхность, ометаемая крыльями ветроколеса:

где D – диаметр ветроколеса.

При плотности воздуха r=1,23 кг/м3 мощность, развиваемую ветроколесом, можно определить по выражению

мощность, развиваемая с единицы ометаемой площади:

Таким образом, мощность, развиваемая ветроколесом, определяется ометаемой площадью ветроколеса, скоростью ветра и величиной коэффициента использования энергии ветра.

10.3 Коэффициент использования энергии ветра

Ветроколесо преобразует в механическую энергию только часть полной энергии потока. Воздушный поток при прохождении через поперечное сечение, ометаемое ветроколесом

Скорость воздушного потока снижается по мере приближения его к ветроколесу и на некотором расстоянии за ним. По классической теории, полные потери скорости воздушного потока за ветроколесом в два раза больше, чем потери в плоскости вращения ветроколеса. Вместе с тем давление воздуха по мере приближения к ветроколесу повышается, а за ним оно резко падает, вследствие чего за колесом образуется некоторое разрежение. Энергия, затраченная на вращение ветроколеса, равна разности кинетической энергии ветра перед ветроколесом и за ним:

где v 2 – скорость воздушного потока за ветроколесом.

С другой стороны, воспринятую ветроколесом энергию можно выразить как произведение силы давления ветра G на скорость потока в плоскости ветроколеса:

Отношение энергии, воспринятой ветроколесом, к полной энергии, которой обладает воздушный поток, называется коэффициентом использования энергии ветра:

Коэффициент использования энергии ветра зависит от величины потери скорости ветра при прохождении его через плоскость ветроколеса. Согласно классической теории ветроколеса

Н.Е. Жуковский для идеального ветроколеса установил максимальную величину коэффициента использования энергии ветра x = 0,59 Этот предел может быть получен при условии:

т.е. идеальное ветроколесо должно работать так, чтобы потери скорости ветра в плоскости его вращения составляли 1/3 от поступающей величины.

В действительности max значительно меньше, и согласно теории реального ветроколеса, разработанной Г.Х.Сабининым, у лучших быстроходных ветроколес максимальная величина коэффициента max = 0,45…0,48, у тихоходных — 0,35…0,38. Данный коэффициент в основном зависит от аэродинамических характеристик ветроколеса.

10.4 Классификация ветроустановок

Ветроэнергетические установки классифицируются по двум основным признакам – геометрии ветроколеса и его положению относительно направления ветра.

В зависимости от геометрии ветроколеса ветроустановки бывают тихоходные и быстроходные. Геометрическое заполнение ветроколеса определяется числом лопастей. Тихоходные (многолопастные) ВЭУ с большим геометрическим заполнением ветроколеса развивают значительную мощность при слабом ветре и небольших оборотах. Быстроходные ВЭУ с малым заполнением ветроколеса развивают максимальную мощность при больших оборотах ветроколеса.

По направлению оси вращения ветроколеса относительно воздушного потока ВЭУ подразделяется на горизонтально-осевые и вертикально-осевые.

Ветроустановки с горизонтальной осью, как правило, крыльчатого или пропеллерного типа (рис. 7а). При этом плоскость вращения ветроколеса перпендикулярна направлению воздушного потока, а ось параллельна потоку. Основной вращающей силой является подъемная сила. Ветроколесо может располагаться перед опорной башней или за ней.

В ветроэлектрических установках обычно используется 2- или 3-лопастные ветроколеса, последние отличаются плавным ходом. Электрогенератор расположен обычно на верху опорной башни в поворотной головке. Многолопастные ветроколеса, развивающие большой крутящий момент при слабом ветре, используются для агрегатирования рабочих машин, не требующих высокой частоты вращения.

Ветроустановки с вертикальной осью вращения вследствие своей геометрии при любом направлении ветра находятся в рабочем положении, ось вращения ветроколеса перпендикулярна воздушному потоку. Вращающей силой является сила сопротивления, и линейная скорость ветроколеса меньше скорости ветра. В такой ветроэнергетической установке за счет удлинения вала генератор можно расположить внизу башни.

Принципиальными недостатками ветроустановок с вертикальной осью являются следующие:

а) коэффициент использования энергии ветра примерно в три раза меньше, чем у установок пропеллерного типа с горизонтальной осью. Наибольший коэффициент max = 0,192;

Источник

Оцените статью