Солнечная батарея (+ контроллер) для доработки питания насоса домашнего водопада
Недавно опубликовывал отчет, про строительство водопада в саду — данный обзор об улучшении работы системы в моменты отсутствия солнца (облачность и вечернее время)
Как я писал в том отчете, при пропадании солнца (тучка набежала или вечереет) декоративный водопадик превращался в тыкву в эдакую альпийскую горку — вода переставала стекать по камням и все замолкало…
как-то так 🙁 Если рассматривать плохую (дождливую) погоду, то это не страшно- просто некому наблюдать за «красотой».
Кратковременные затенения тучками наоборот, даже некоторый цимус придают- меняется напор воды и форма/направления стекания ручейков.
А как вот как быть с относительно вечерним временем — когда еще хочется посидеть рядом с водопадиком, попить чай, «побаловаться плюшками», а солнца уже недостаточно для работы насоса? 🙂
Для решения вышеописанной проблемы, как минимум, требуется более крупная солнечная панель (с относительно недешевым ценником). Хотелось конечно сразу купить… но «жаба» давала о себе знать 🙁
Случайно попался на глаза, указанный в шапке лот, в котором, при отправке из России, получалась весьма приятная цена — не смог устоять! 🙂
Некоторое время даже не мог определиться с мощностью батареи- за указанную стоимость «чесалось» купить заметно бОльшую мощность, для использования не только с водопадом. Потом взял себя в руки, поумерил свои желания- и решил опробовать сначала небольшую батарею, во избежание попадания ее в кучу «бесполезных» покупок.
Основная идея покупки этого лота:
ну, во-первых, более мощная солнечная панель, что уже само по-себе будет давать более продолжительную работу (при меньшем освещении)
а во-вторых, что мне было даже более интересно — программируемый контроллер, который, кстати говоря, уже идет в комплекте.
Данный контроллер возможно настроить на отключение использования внешнего аккумулятора при разрядке до определенного напряжения… мысль улавливаете?
Рассматриваемая солнечная панель способна, кроме работы насоса, обеспечивать текущий подзаряд аккумулятора.
… наступает вечер или тучки набегают, контроллер переключается на работу от заряженного аккумулятора и работает до установленного нами напряжения!
То есть, например, ставим мы «граничное» напряжение на вольт ниже полностью заряженного, и насос работает полчаса от аккумулятора, затем выключается.
Устанавливаем напряжение отключение ниже на 2 вольта, и работает насос уже пару часов.
Пример чисто теоретический — зависит от емкости аккумулятора, потребляемого тока насосом и т.п., но думаю создать подобный регулируемый «буфер» вполне реально.
Заработает ли моя идея- узнаем вместе! 😉
На момент написания этой части обзора, я сам еще не знаю, чем закончится эксперимент!
Сначала немного покажу саму купленную солнечную панель, контроллер… а затем уже перейдем к «тактическим» и практическим экспериментам 😉
но на момент покупки не все были в наличии в России (по эконом цене)
DSP-10P + USB
Максимальная мощность (Pmax): 10 Вт
Максимальное напряжение питания (Vmp): 18,00 в
Максимальный ток мощности (Imp): 0.56A
Напряжение открытой цепи (Voc): 22,5 в
Ток короткого замыкания (Isc): 0.81A
Размеры: 280*350*17 мм
Вес: 1,5 кг
DSP-20P + USB
Максимальная мощность (Pmax): 20 Вт
Максимальное напряжение питания (Vmp): 18,00 в
Максимальный ток мощности (Imp): 1.11A
Напряжение открытой цепи (Voc): 21,60 в
Ток короткого замыкания (Isc): 1.3A
Вес: 1,9 кг
Размеры: 480*350*17 мм
DSP-30P + USB
Максимальная мощность (Pmax): 30 Вт
Максимальное напряжение питания (Vmp): 18,00 в
Максимальный ток мощности (Imp): 1.66A
Напряжение открытой цепи (Voc): 22,5 в
Ток короткого замыкания (Isc): 1.91A
Вес: 2,8 кг
Размеры: 350*660*25 мм
DSP-40P + USB
Максимальная мощность (Pmax): 40 Вт
Максимальное напряжение питания (Vmp): 18,00 в
Максимальный ток мощности (Imp): 2.22A
Напряжение открытой цепи (Voc): 21,60 в
Ток короткого замыкания (Isc): 2.47A
Вес: 3,5 кг
Размеры: 450*660*25 мм
DSP-50P + USB
Максимальная мощность (Pmax): 50 Вт
Максимальное напряжение питания (Vmp): 18,00 в
Максимальный ток мощности (Imp): 2.78A
Напряжение открытой цепи (Voc): 22,50 в
Ток короткого замыкания (Isc): 3.03A
Вес: 4,1 кг
Размеры: 530*660*25 мм
DSP-80P + USB
Максимальная мощность (Pmax): 80 Вт
Максимальное напряжение питания (Vmp): 18,00 в
Максимальный ток мощности (Imp): 4.44A
Напряжение открытой цепи (Voc): 21,60 в
Ток короткого замыкания (Isc): 4.69A
Вес: 6 кг
Размеры: 760*660*25 мм
DSP-100P
Максимальная мощность (Pmax): 100 Вт
Максимальное напряжение питания (Vmp): 18,00 в
Максимальный ток мощности (Imp): 5.81A
Напряжение открытой цепи (Voc): 21,6 в
Ток короткого замыкания (Isc): 5.56A
Вес: 4,1 кг
Размеры: 530*660*25 мм
Все панели, кроме самой мощной, укомплектованы контроллером заряда (с юсб выходом)
Солнечная панель
DSP-20P + USB
Максимальная мощность (Pmax): 20 Вт
Максимальное напряжение питания (Vmp): 18,00 в
Максимальный ток мощности (Imp): 1.11A
Напряжение открытой цепи (Voc): 21,60 в
Ток короткого замыкания (Isc): 1.3A
Вес: 1,9 кг
Размеры: 480*350*17 мм
В верхней части батареи находится коробка коммутации, открывается довольно туго…
Внутри, кроме диода (используется по-сути при групповых соединениях) и контактов ничего нет 🙂
Контроллер
Самая левая кнопка«меню» — при нажатии поочередно, по кругу, отображает: напряжение поддерживаемого заряда, напряжение на аккумуляторе включения нагрузки, напряжение отключения нагрузки, таймер работы нагрузки, тип используемого аккумулятора.
Правая кнопка — «ручное вкл/выкл нагрузки»
При удерживании кнопки «меню» на интересующем нас пункте можно войти в режим редактирования выбранного параметра (мигает индикация), при этом средняя и правая кнопки используются как ±
Имеется несколько вариантов работы нагрузки по расписанию:
24Н — нагрузка включена круглосуточно, возможно ручное управление правой кнопкой
0Н — нагрузка включается после захода солнца (в темноте) и выключается при появлении освещения.
1-23Н -продолжительность работы нагрузки, после захода солнца в часах.
При отключении аккумулятора, выбранные настройки сохраняются!
Довольно удобный таймер (при использовании в качестве нагрузки освещения ;), для моих же целей, логика работы таймеров не подходит 🙁
вид снизу
Сверху маркировка модели с краткими характеристиками
задняя часть пустая, металлическая плоская- бывают варианты использования рельефных пластин, так как задняя стенка на всех подобных контроллерах выполняет роль радиатора охлаждения.
Для сравнении две панели
На ярком солнце, без нагрузки, новая солнечная панель выдает до 21в
При затенении до 18.5в
и ток короткого замыкания 1А — т.е. в принципе мощность соответствует описанию.
Для примера, «старая» панель выдавала 19в на таком же солнце
и 16 при затенении
Ток, к сожалению, на этой панели сложно замерить — при замере только кратковременно появлялись цифры, и пропадали, наверное имеются какие-то элементы в залитой компаундом «черной коробочке» сзади панели.
Кратковременные показания появлялись примерно от 0.4 до 0.6А, то есть тоже примерно соответствуют заявленной мощности
Контроллер (и панель) в работе
Во всех инструкциях на подобные контроллеры имеется предупреждение о соблюдении последовательности подключения во избежании… неприятностей.
Первым подключается аккумулятор (его использование при работе контроллера обязательно), затем солнечная панель и уже последней нагрузка.
После подключения аккумулятора, на экране появляется его значок с текущим напряжением заряда и иконка подключенной нагрузки.
Текущее напряжение аккумулятора, контроллер показывает с заметной погрешностью — в моем экземпляре ошибка 0.3В
Как только подключаем солнечную панель, загорается иконка солнечной батареи и стрелка (от панели к аккумулятору) -начинает заряжаться аккумулятор, то есть на вид все нормально работает.
Значок нагрузки не светится — я отключил ее правой кнопкой
Зарядный ток Кстати к USB выходам контроллера тоже нет претензий — смартфон заряжается без проблем, вот только токи заряда замерять не стал, особого смысла не вижу, да и пользоваться USB не планирую.
В процессе экспериментов оказалось, что контроллер настроить можно в определенных пределах, и например, установку отключения нагрузки невозможно установить выше 11.3в, а это не очень удобно для воплощения моей идеи- работа насоса будет слишком продолжительной
Поддерживаемое напряжение заряда возможно настроить в пределах:
Напряжение включения нагрузки (защита аккумулятора от разряда)
Напряжение отключения нагрузки (защита аккумулятора от разряда)
После отключения контроллера от аккумулятора, настройки сохраняются
Как я понимаю, что бы получить минимальное время работы необходимо установить минимальное напряжение заряда (12.7), 11.5 включение нагрузки и 11.3 отключение нагрузки… но и при таких настройках продолжительность работы даже от старой батареи УПСа оказалась более 9 часов!
Надо искать аккумулятор меньшей емкости, или подбирать более «дохлый» с УПСа (хорошо что у меня на работе их «как грязи», в принципе не проблема :)))
Хотя… в голову пришел еще один интересный вариант- можно увеличить нагрузку!
И сделать ее можно «полезной» — например подключить подсветку водопада с датчиком освещения, так даже симпатичнее должно получиться в сумерках и вечером.
К сожалению в этом обзоре не смогу Вам показать фото конечного результата -осень, холодает, не актуально сейчас этим уже заниматься. За зиму что-нибудь соберу/прикуплю интересное, весной буду собирать 🙂
В принципе доволен! Насос от этой солнечной панели ЯВНО работает дольше (при меньшем освещении) + ее мощности на солнце достаточно для заряда аккумулятора + имеется в комплекте контроллер, с помощью которого возможно организовать практически круглосуточную работу водопада.
Логика таймеров контроллера в большей степени «заточена» под работу освещения в вечернее и ночное время -мне не слишком удобна, но возможно пригодится другим пользователям.
Источник
Солнечная батарея на балконе: тестирование контроллера заряда
В предыдущей части была рассмотрена и проверена работа платы BMS, обеспечивающей корректный заряд литий-ионного аккумулятора. Китайская почта наконец доставила Solar charge controller, так что пора протестировать и его.
Результаты тестирования под катом.
Контроллер заряда (Solar charge controller)
Данное устройство является основным во всей системе — именно контроллер обеспечивает взаимодействие всех компонентов — солнечной панели, нагрузки и батареи (он нужен, только если мы хотим именно накапливать энергию в батарее, если отдавать энергию сразу в электросеть, нужен другой тип контроллера grid tie).
Контроллеров на небольшие токи (10-20А) на рынке довольно-таки много, но т.к. в нашем случае используется литиевая батарея вместо свинцовой, то нужно выбирать контроллер с настраиваемыми (adjustable) параметрами. Был куплен контроллер, как на фото, цена вопроса от 13$ на eBay до 20-30$ в зависимости от жадности местных продавцов. Контроллер гордо называется «Intelligent PWM Solar Panel Charge Controller», хотя по сути вся его «интеллектуальность» заключается в возможности задания порогов заряда и разряда, и конструктивно он не сильно отличается от обычного DC-DC конвертора.
Подключение контроллера весьма просто, у него всего 3 разъема — для солнечной панели, нагрузки и аккумулятора соответственно. В качестве нагрузки в моем случае была подключена светодиодная лента на 12В, аккумулятор все тот же тестовый с Hobbyking. Также на контроллере есть 2 USB-разъема, от которых можно заряжать различные устройства.
Все вместе выглядело так:
Перед тем как использовать контроллер, его надо настроить. Контроллеры этой модели продаются в разных модификациях для разных типов батарей, отличия скорее всего лишь в предустановленных параметрах. Для моей литиевой батареи c тремя ячейками (3S1P) я установил следующие значения:
Как можно видеть, напряжение отключения заряда (PV OFF) установлено на 12.5В (исходя из 4.2В на ячейку можно было поставить 12.6, но небольшой недозаряд положительно сказывается на количестве циклов батареи). Следующие 2 параметра — отключение нагрузки, в моем случае настроено на 10В, и повторное включение заряда на 10.5В. Минимальное значение можно было поставить и меньше, до 9.6В, небольшой запас был оставлен для работы самого контроллера, который питается от той же батареи.
Тестирование
С разрядом проблем ожидаемо не было. Заряда батареи хватило чтобы зарядить планшет, также горела светодиодная лента, и при пороговом напряжении в 10В, лента погасла — контроллер отключил нагрузку, чтобы не разряжать батарею ниже заданного порога.
А вот с зарядом все пошло не совсем так. Вначале все было хорошо, и максимальная мощность по ваттметру составила около 50Вт, что вполне неплохо. Но ближе к концу заряда подключенная в качестве нагрузки лента стала сильно мерцать. Причина ясна и без осциллографа — две BMS не очень дружат между собой. Как только напряжение на одной из ячеек достигает порога, BMS отключает батарею, из-за чего отключается и нагрузка и контроллер, затем процесс повторяется. Да и учитывая что пороговые напряжения уже заданы в контроллере, вторая плата защиты по сути и не нужна.
Пришлось вернуться к плану «Б» — поставить на батарею только плату балансировки, оставив контроллеру управление зарядом. Плата 3S balance board выглядит так:
Бонус этого балансира еще и в том, что он в 2 раза дешевле.
Конструкция получилась даже проще и красивее — балансир занял свое «законное» место на балансировочном разъеме батареи, к контроллеру батарея подключена через силовой разъем.
Все вместе выглядит примерно так:
Больше никаких неожиданностей не было. Когда напряжение на батарее поднялось до 12.5В, потребляемая от панелей мощность упала практически до нуля а напряжение увеличилось до максимума «холостого хода» (22В), т.е. заряд больше не идет.
Напряжение на 3х ячейках батареи в конце заряда составило 4.16В, 4.16В и 4.16В, что дает в сумме 12.48В, к контролю заряда, как и к балансиру претензий нет.
Заключение
Система работает, почти как и ожидалось. Днем электроэнергия может накапливаться, вечером ее можно использовать. В финальной версии батарея будет заменена на блок из элементов 18650, которые уже описывались в предыдущей части. Емкость батареи можно увеличить до 20Ач, больше для балконной системы уже избыточно. Если же приобрести другой балансир, можно использовать и LiFePo4-аккумуляторы, достаточно установить нужные пороги напряжений в контроллере. Однако в моем случае, смысла в этом скорее всего нет — стоимость LiFePo4 на 10-20Ач составляет 80-100$, что уже сопоставимо со стоимостью Grid Tie контроллера, который я собираюсь протестировать в дальнейшем.
Еще исключительно для тестов (понятно что экономического смысла в этом нет) была заказана батарея ионисторов на 12В, благо цены падают и сейчас они относительно дешевые. Будет интересно проверить, на сколько хватит их заряда. Stay tuned.
Примечание: показанная на фото батарея от Hobbyking была поставлена исключительно для теста. Эти батареи не тестировались для постоянного использования в подобных системах, также их не рекомендуется оставлять без присмотра.
Более-менее окончательная версия батареи выглядит вот так:
Это 12 ячеек 18650, соединенных в группы параллельно по 4. Примерная емкость батареи около 12ач, этого хватает для зарядки разных гаджетов и для вечернего освещения комнаты светодиодной лентой. В батарее используются элементы Panasonic, те же что и в автомобилях Tesla S, надежность данных ячеек можно считать вполне хорошей.
Для желающих посмотреть видео-версию, ролик выложен в youtube.
Источник