Карбоновый аккумулятор что это
Сегодня хочу поделиться знаниями о карбоновых батареях.
Последние несколько лет этот термин гуляет в аккумуляторной среде.
Исходя из названия, куда-то добавляется углерод. Да, добавляются углеродные нано трубки.
Срок службы аккумуляторов до 15 лет
Электролит: в карбоновых батареях используют коллоидный электролит( добавление SiO2(гель) в электролит в небольшом количестве.
Существует уже два поколения карбоновых батарей.
В первом поколении углерод добавлялся только в свинец при производстве отрицательной решетки. Кроме углерода в сплав добавляется олово и кальций. Решетка получается с высокой проводимостью, прочностью, коррозионностойкостью. . Перемешивание С(углерода) и Pb(свинца) происходит химическим и физическим способом для выравнивания размеров и плотности С и Pb.
Добавление углерода в состав активной массы резко снижает процесс сульфатации пластин.
Во втором поколении углерод добавляют в активную массу отрицательной пластины, как и в саму решетку.
Устройство
Разница между первым и вторым поколением: 1е поколение нельзя разряжать большими токами, но можно полностью заряжать. 2е поколение можно разряжать большими токами, но не рекомендуется полностью заряжать.
Заряжать карбоновые батареи рекомендуется до 90-100%(PSOC). Разряжать до 30% от номинала. Желательно не разряжать до 100% от номинальной ёмкости. В идеале работа батареи должна быть следующим образом: разряд со 100% от номинальной ёмкости до 30% от номинальной ёмкости, затем заряд до 90% от номинальной ёмкости, затем разряд до 30% от номинальной ёмкости и так далее. DOD(глубина разряда) обычно 60% от номинальной ёмкости. В этом режиме 4800 циклов заряд-разряд. Если снимать 80% от номинальной ёмкости, то 3800 циклов заряд-разряд.
Коллоидный электролит полимерного состава позволяет сбалансировать пропорцию электролита с сепаратором AGM, устранить явление расслоения, улучшить
теплопроводность и ионную проводимость батареи и избежать риска терморазгона
DOD(глубина разряда) обычно 60% от номинальной ёмкости. В этом режиме 4800 циклов заряд-разряд. Если снимать 80% от номинальной ёмкости, то 3800 циклов заряд-разряд.
Инженеры компании Hitachi (CSB battery) утверждают, что их карбоновые батареи могут совершать 2400 циклов полного разряда аккумулятора. У литиевых батарей количество циклов примерно 3000.
Обратите внимание, что количество циклов карбоновых батарей соответствует количеству циклов литиевых аккумуляторов.
Применение
Карбоновые батареи надо использовать в устройствах, где нужна повышенная цикличность. Например, в альтернативной энергетике. Совсем не рекомендуется их устанавливать в ИБП(UPS).
Источник
Карбоновые (углеродные) аккумуляторные батареи
Среди свинцово-кислотных аккумуляторных батарей большую популярность получили герметизированные или, как их еще называют «необслуживаемые». По технологии изготовления они разделяются на AGM-технологию («Absorption Glass Matt») и GEL-технологию («Gelled Electrolite»). Их популярность объясняется тем, что они не требуют обслуживания в виде периодической доливки дистиллированной воды, исключается вероятность протечки электролита, могут работать как в вертикальном, так и в горизонтальном положении, могут размещаться совместно с другим оборудованием, не требуя отдельного аккумуляторного помещения и принудительной вентиляции.
Нововведения в технологии изготовления герметизированных аккумуляторов
Но научно-технический прогресс не стоит на месте, и разработчики при усовершенствовании конструкций современных аккумуляторных батарей нашли способ улучшить технические характеристики герметизированных аккумуляторов AGM.
Известно, что процесс накопления сульфатов является слабым местом свинцово-кислотного аккумулятора. Этот процесс из-за недостаточной шероховатости отрицательной пластины, где используется чистый свинец, препятствует быстрому заряду и приводит к деградации аккумуляторной батареи.
Дело в том, что отрицательный электрод свинцово-кислотной аккумуляторной батареи состоит из губчатого свинца и при разряде на его поверхности образовывается сульфат свинца. При заряде он снова переходит в исходное положение. Процесс разложения происходит медленно, и если попытаться «ускорить» его, например, увеличением зарядного тока, то это вызовет появление избыточных электронов, провоцирующих разложение воды и возникновение газов. Начнется, так называемый процесс «выкипания». В последующем сульфат свинца может формировать кристаллы на электроде, что еще больше снижает скорость заряда.
Был предложен ряд способов для подавления процесса сульфатации в свинцово-кислотных аккумуляторных батареях, и некоторые из этих способов включали использование углерода в различных формах для замедления этого процесса. Например, в патенте Великобритании №18590 раскрыт способ, предназначенный для увеличения срока службы свинцово-кислотной аккумуляторной батареи путем защиты от коррозии решеток со свинцовой основой, которые формируют положительные электроды батареи. Этот способ включает обработку решеток смесью каучука, сурьмы и графита. Смесь наносится на решетки либо путем погружения решеток в смесь или нанесением смеси на решетки кистью. Однако, как и во всех способах нанесения покрытия данного типа, получаемое в результате покрытие довольно толстое. Часто эти покрытия не плотно прикрепляются к поверхностям электродов, и они имеют тенденцию растрескиваться и отшелушиваться от электродов. Более того, добавки в покрытие могут снизить проводимость электродов и подавлять процессы электронного обмена в свинцово-кислотной аккумуляторной батарее.
Для решения этих проблем впервые в Японии была разработана технология добавления углерода в состав отрицательного электрода. Это предает аккумуляторной батарее улучшенные зарядные и разрядные характеристики. Высокопроводящие углеродные частицы тесно связаны с активным материалом и создают улучшенную проводящую сеть, уменьшая внутреннее сопротивление, увеличивая плотность энергии и хорошую восстанавливаемость после разряда.
В природе углерод достаточно доступен. Углерод содержится в графитах (высококристалическая непористая форма углерода), сажах (аморфные углеродные материалы), полученные при разложении углеводородного сырья: нефти, природного газа, каменноугольной смолы, ацетилена. Даже обычный уголь содержит до 80% углерода. Поэтому в перспективе такие аккумуляторы будут дешевыми в производстве, менее токсичными и безвредными для окружающей среды и человека.
На рисунке показано совмещение свинцовой отрицательной пластины из ячейки обычного свинцово-кислотного аккумулятора с углеродным электродом.
В последующем конструкторы усовершенствовали технологию изготовления, применив добавки углерода и в состав положительных электродов, тем самым обеспечив высокую пористость, решив проблему активного разрушения материала и максимально сократив процесс сульфатации.
В тоже время надо отметить, что на положительном электроде также как и на отрицательном формируется сульфат свинца, но при этом на нем поддерживается высокая скорость заряда, в отличие от отрицательного.
Удельная емкость батарей на базе двойного углерода сравнима с литий-ионными аккумуляторами, однако в плане безопасности новые батареи значительно превосходят литиевые. Кроме того новые аккумуляторы гораздо дольше сохраняют рабочий ресурс и быстрее перезаряжаются, что и делает их отличной альтернативой сегодня.
Факторы срока службы батарей и способы его продления
Общеизвестно, что одним из определяющих факторов срока службы обычной свинцово-кислотной батареи является коррозия положительного электрода с последующим увеличением его объема. По мере того, как положительный электрод подвергается коррозии, возникающее расширение объема вызывает механические нагрузки на электрод, приводящие к его растрескиванию и разлому. Далее, на развившихся стадиях коррозии, может произойти внутреннее замыкание решетки и разрыв корпуса батареи.
Одним из способов потенциального продления срока службы в таких условиях является увеличение сопротивляемости коррозии электродов. Углеродное покрытие электродов снижает скорость коррозии электродов путем ограничения контакта между раствором электролита и металлом электрода. При этом электропроводность углерода позволяет осуществлять электронный обмен во время процессов разряда и заряда аккумуляторной батареи.
Таким образом, добавление углерода с состав электродов позволило добиться следующих результатов при эксплуатации свинцово-углеродных аккумуляторных батарей:
- Сниженная сульфатация при частичном заряде;
- Улучшенные разрядные характеристики;
- Улучшенные показатели циклического использования;
- Увеличенный срок службы в буферном режиме;
- Увеличенный срок хранения без подзаряда;
- Сокращение сроков ускоренного заряда;
- Уменьшение тепловыделения при заряде.
Свинцово-углеродные аккумуляторы идут на замену обычным свинцово-кислотным аккумуляторным батареям с решающим преимуществом в возможности быстрого заряда без повреждений, работы в циклическом режиме с разрядами от 30% до 70% без риска сульфатации, а также отсутствии необходимости принудительного охлаждения.
Но есть и недостатки: быстрое падение напряжения при разряде, особенно при высоких нагрузках. Поэтому применение их как стартерных батарей не целесообразно. Также из-за электрохимических реакций наблюдается увеличение скорости выделения водорода, хотя сегодня в науке процесс выделения водорода на углероде пока не так хорошо изучен.
Наилучшие условия их работы – это равномерная отдача электроэнергии на всем этапе разряда, то есть применение на электротранспорте, инвалидных колясках, гольф-карах, складской и другой технике с использованием циклического режима работы. Но это не исключает возможность применения их в системах альтернативной энергетики, а также системах телекоммуникации и связи.
В перспективе планируется перейти на полностью углеродные электроды, что в корне изменит и название батареи. Она будет полностью углеродной. На самом деле идея полностью углеродной батареи не является новой и разрабатывается в Японии с 70-х годов прошлого века. Около 6-7 лет назад ученые университета Куйсю (Kyushu University) начали работу по нанотехнологиям и улучшению углеродного материала, что позволило значительно увеличить производственную мощность этих батарей.
Оставьте свои контактные данные, и наши специалисты свяжутся с вами, для консультации или оформления заказа
Источник
Углеродные аккумуляторы приходят на смену литиевым
Начиная с 2014 года, американо-японская компания Power Japan Plus, занимающаяся поиском и разработкой материалов для высокоэффективных батарей, запустила производство аккумуляторов нового типа. В разработке принимали активное участие ученые из Университета Кюсю. Эти аккумуляторы в своей основе имеют органический электролит, который работает, однако, с катодом и анодом, изготовленными из композита на основе углерода, а углерод для батарей получают из хлопка, кофейных зерен или бамбука.
Новые батареи назвали Ryden (Ryden dual carbon battery). В отличие от популярных сегодня литий-ионных батарей, батареи Ryden на основе «двойного углерода» оказываются наиболее эффективными и полностью экологически чистыми. Здесь не используется редкие и тяжелые металлы, таким образом батареи получаются не дорогостоящими и целиком поддаются вторичной переработке. На данный момент это лучший способ хранения электрической энергии.
Если оглянуться на литий-ионные аккумуляторы, созданные изначально в 1991 году компанией Sony Energitech, то они, конечно, обладают значительными преимуществами:
быстро перезаряжаются и медленно разряжаются;
имеют низкий саморазряд в районе 10%;
способны питать самый широкий спектр приборов, начиная с мобильных телефонов, заканчивая сложными космическими аппаратами.
Тем не менее, литий, несмотря на его легкий вес и хорошую удельную плотность энергии, отличается и недостатками: угольный след, токсичность, высокая стоимость, дефицитные компоненты. Эти недостатки лития и побудили исследователей из Японии искать альтернативы менее токсичные, с меньшим риском для окружающей среды, с возможностью легкой утилизации.
Удельная емкость батарей на базе двойного углерода сравнима с литий-ионными аккумуляторами, однако в плане безопасности новые батареи значительно превосходят литиевые. Кроме того новые аккумуляторы гораздо дольше сохраняют рабочий ресурс и быстрее перезаряжаются, что и делает их отличной альтернативой сегодня.
Taisan Team летом 2014 протестировали новые батареи на электрическом гоночном автомобиле, и результаты превзошли все ожидания. Легкий аккумулятор Ryden не перегревался во время гонки, и водителю вообще не нужно было останавливаться или сбрасывать скорость при достижении электролитом аккумулятора опасной температуры. То есть аккумулятору на основе «двойного углерода» громоздкая система охлаждения не требуется в принципе.
Все тонкости касательно устройства батарей производитель, конечно, не раскрывает, однако заявляет об уникальном химическом процессе, который протекает межу анодом и катодом, изготовленными из самого обычного углерода. При этом батарея химически полностью устойчива и не опасна, как литий-ионная, ни для окружающей среды, ни для человека.
Тесты между тем показали скорость зарядки в 20 раз превышающую скорость зарядки литий-ионных батарей аналогичной емкости! Номинальное напряжение одной ячейки составляет 4 вольта. Рабочий ресурс на 50% выше лучших литиевых аналогов — 3000 против прежних максимально достижимых 2000 циклов зарядки — разрядки.
Производство батарей на базе «двойного углерода» не связано с изменением уже работающих линий для литий-ионных батарей, причем за счет отсутствия редких металлов в списке компонентов, исключается зависимость от рыночных цен на сырье. Затраты на утилизацию также перестали быть проблемой, а само производство почти полностью безотходное.
Такой колоссальный технологический скачок стал итогом компромисса, к которому пришли производители и разработчики, они достигли желаемого баланса, — сообщил в пресс-релизе технический директор компании Power Japan Plus, Канаме Такея.
Полномасштабное производство аккумуляторов Ryden типоразмера 18650 началось в префектуре Окинава. И теперь безопасные и эффективные аккумуляторы доступны для разнообразных применений, начиная от медицинской техники, заканчивая электрическим транспортом, для которого Power Japan Plus может поставлять комплектующие для создания батарей большой емкости, чтобы производители электротранспорта могли получить требуемую емкость при самостоятельной сборке.
Поиски экологически чистой замены литию вели с 2014 года и химики из Университета штата Орегон. В поисках эффективного био-материала ими был обнаружен химический компонент, способный произвести революцию в индустрии электрических батарей. Cradle to Cradle — так называется концепция, предполагающая 100% повторное использование материалов, получаемых в процессе человеческой жизнедеятельности: продукт воссоздается либо из исходного материала получается новый.
Новшество заключается в утилизации вредных отходов путем их повторного использования в производстве аккумуляторов. Группа исследователей обнаружила возможность создания дешевых надежных батарей из полициклических ароматических углеводородов.
Соединения полициклических ароматических углеводородов (ПАУ) являются загрязнителями, и их можно найти всюду. Переработка данных соединений позволит создавать устойчивые батареи, при этом очищать окружающую среду. Являющиеся продуктами сжигания углеводородов, ПАУ распространяются по воде, почве, воздуху, и входят в список наиболее вредных для окружающей среды веществ.
Аккумулятор, который разработали в Университете штата Оригон, будет содержать углеродный анод и катод на основе ПАУ. Особый интерес представляет вещество коронин. Коронин в твердой кристаллической форме безопасен. По результатам тестирования выяснилось, что емкость ионов получается достаточно высокой, структура — химически стабильной, и в перспективе можно будет получить батареи отлично подходящие для сохранения энергии солнца и ветра с целью ее дальнейшего использования.
Имеет место очень большое преимущество коронина перед тем же углеродом: углерод несовместим с неводным электролитом, в то время как для коронина это вообще не является проблемой! То есть батареи получатся необслуживаемыми и при этом надежными и устойчивыми. Кстати, исследования относительно формирования звезд показали, что ПАУ присутствует в туманности «Статуя Свободы», то есть Солнце, вероятно, также возникло из среды с содержанием ПАУ — «энергия приходящая от звезд будет использована в батареях, и станет возвращаться к нам снова и снова» — отметила Ханен Хаттаб — доктор философии из Университета Квебека в Монреале.
Со всей очевидностью представляется, что будущее все же за углеродными аккумуляторами. Они будут дешевыми в производстве, не токсичными, безвредными для окружающей среды и для человека. Углерод широко доступен. Обычный уголь содержит 80% углерода. Для любого живого или мертвого организма характерно содержание соединений углерода.
Жизнь невозможна без углерода. Растения получают соединения углерода из воздуха, используют углерод для формирования корневой системы. Животные получают углерод с пищей. И те и другие выделяют его в составе углекислого газа. Так или иначе, углерод не в дефиците, и это вселяет в нас определенную надежду.
Источник