Какую температуру выдерживают аккумуляторы

Питание для холодного климата: морозостойкие литий-полимерные АКБ от EEMB

Литий-полимерные аккумуляторные батареи производства компании EEMB с индексом LC в конце наименования имеют возможность разряда при отрицательных температурах до -40°C. При этом значение емкости остается на уровне 70% от номинальной.

С егодня химические источники тока, — литиевые аккумуляторные батареи (АКБ) и гальванические элементы, — используются как в портативной электронике — в ноутбуках, сотовых телефонах, карманных ПК, мр3-плеерах и так далее, – так и в электротранспорте, накопителях энергии, энергосистемах. При этом производители всеми силами стараются повысить плотность хранения энергии, увеличив тем самым время автономной работы устройств. По своим характеристикам литиевые аккумуляторы превосходят разработки, произведенные по другим химическим технологиям (Ni-Cd – никель-кадмиевые аккумуляторы, Ni-MH – никель-металлгидридные аккумуляторы). Можно выделить следующие преимущества литиевых аккумуляторов:

  • отсутствие «эффекта памяти», что дает возможность заряжать и подзаряжать аккумулятор по мере необходимости;
  • высокая удельная емкость;
  • небольшая масса;
  • низкий уровень саморазряда – не более 3…5% в месяц.

Конечно, как и в любой технологии, у литиевых аккумуляторов есть и недостатки, например:

  • необходимость схемы защиты (встроенной или внешней), которая ограничивает максимальное напряжение на каждом элементе аккумулятора во время заряда и предохраняет напряжение элемента от слишком низкого понижения при разряде. Кроме того, она ограничивает максимальные токи заряда-разряда и контролирует температуру элемента;
  • более высокая стоимость по сравнению с Ni-Cd-аккумуляторами.

Типовые характеристики литиевых АКБ зависят от химического состава их компонентов, наличия или отсутствия в них примесей и варьируются в следующих пределах:

  • напряжение единичного элемента (ячейки):
    • номинальное: 3,6…3,7 В;
    • максимальное: 4,2 В;
    • минимальное: 2,5…3,0 В;
  • удельная энергоемкость: 110…243 Вт•ч/кг;
  • число циклов «заряд/разряд» до достижения 80 % емкости: 600;
  • саморазряд при комнатной температуре: 3…5% в месяц;
  • ток нагрузки относительно емкости С, представленной в А•ч:
    • постоянный: до 3…5С (тип.);
    • оптимальный: до 1С;
  • диапазон рабочих температур: -20…60°C (оптимальная: 20°C).
Читайте также:  Автоматические зарядные устройства для автомобильных аккумуляторов рейтинг 2020

Технологии изготовления литиевых аккумуляторов постоянно улучшаются. Способы решения проблем с обеспечением безопасности эксплуатации и высокой стоимости привели к появлению литий-полимерных (Li-polymer или Li-pol) аккумуляторов.

Основное их отличие от Li-ion отражено в названии и заключается в типе используемого электролита. Изначально, в 70-х годах, применялся сухой твердый полимерный электролит, похожий на пластиковую пленку и не проводящий электрический ток, но допускающий обмен ионами (электрически заряженными атомами или группами атомов). Полимерный электролит фактически заменяет традиционный пористый сепаратор, пропитанный электролитом.

Такая конструкция упрощает процесс производства, характеризуется большей безопасностью и позволяет выпускать тонкие аккумуляторы произвольной формы. К тому же отсутствие жидкого электролита исключает возможность воспламенения. Толщина элемента составляет около одного миллиметра, поэтому разработчики оборудования свободны в выборе формы, очертаний и размеров, вплоть до внедрения его во фрагменты одежды.

Основные преимущества литий-полимерных аккумуляторов:

  • малый саморазряд;
  • толщина элементов: от 1 мм;
  • свобода в выборе формы АКБ;
  • незначительный спад напряжения по мере разряда;
  • улучшенная безопасность.

По сравнению с жидкими электролитами в литий-ионных аккумуляторах, полимерные электролиты имеют меньшую ионную проводимость, которая, к тому же, снижается при температуре ниже нуля. Поэтому проблема разработок Li-pol-аккумуляторов состояла не только в поиске наиболее подходящего электролита с достаточно высокой проводимостью, совместимого с электродными материалами, но и в расширении диапазона рабочих температур.

Аккумуляторы с полимерным электролитом выпускают многие мировые производители. Электродные материалы, рецептуры электролита и технологии изготовления Li-pol-аккумуляторов разных компаний значительно отличаются. Соответственно, отличаются и их характеристики. На качество Li-pol-аккумуляторов и стабильность их работы сильно воздействует однородность полимера, на которую оказывают влияние как соотношение компонентов электролита, так и температура полимеризации.

Среди компаний, выпускающих литий-полимерные АКБ, выделяется компания EEMB – известный и хорошо зарекомендовавший себя производитель литиевых аккумуляторов, предлагающий широкий спектр химических источников тока [1]. Продуктовая линейка включает в себя первичные (неперезаряжаемые) и вторичные (перезаряжаемые) литиевые батареи. Со времени основания в 1995 году компания стала широко известна во многих ключевых сегментах рынка химических источников тока. EEMB производит высокотехнологичные литиевые батареи для промышленности и специальных применений.

Основным минусом литиевых аккумуляторов является существенное уменьшение емкости и быстрый разряд при низких температурах. Как правило, предельной температурой у аккумуляторов такого типа является -20°C.

В настоящий момент компания EEMB разработала и серийно производит литий-полимерные АКБ с возможностью разряда при температуре от -40°C (таблица 1). При этой температуре значение емкости остается на уровне 70% от номинальной при токе разряда 0,2С и напряжении отсечки 2,75 В, что намного больше военного стандарта емкости 40%. В дополнение к этому компания EEMB имеет ряд патентов на свое изобретение.

Таблица 1. Морозостойкие аккумуляторы EEMB

Наименование Номинальное напряжение, В Емкость, мАч Размеры, мм Вес, г
Стандартная Минимальная Толщина Ширина Высота
LP383454LC 3,7 720 670 3,8 34 54 14,4
LP603048LC 3,7 900 850 6 30 48 18
LP963450LC 3,7 1800 1700 9,6 34 50 36
LP103450LC 3,7 1850 1800 10 34 50 37
LP505597LC 3,7 3100 2900 5 55 97 62

Низкотемпературные литий-поли­мерные батареи найдут широкое применение в устройствах, предназначенных для холодного климата.

Рис. 1. Низкотемпературный аккумулятор LP603449LC

Отличить морозостойкую серию аккумуляторов можно по наличию символов LC в конце наименования, например LP103454LC (рисунок 1), где:

  • LP – тип аккумулятора (Li-Pol);
  • 10 – толщина аккумулятора (1,0 мм);
  • 34 – ширина аккумулятора (34 мм);
  • 54 – длина аккумулятора (54 мм);
  • LC – низкотемпературная версия.

Данные АКБ открывают новые возможности применения литиевых аккумуляторов, и это – существенная веха в аккумуляторном производстве.

На рисунке 2 изображены графики зависимости емкости и напряжения при температуре -10°С и -20°С для стандартной версии аккумулятора (синий и красный цвет), а также для низкотемпературной LC-версии аккумулятора (черный цвет). Изображенные зависимости снимались при разрядном токе 0,2 С (C – емкость аккумулятора) до напряжения отсечки 2,75 В. В таблице 2 приведены абсолютные значения емкости при тех же условиях разряда.

Рис. 2. Разряд стандартных и LC-АКБ в зависимости от температуры

Из графиков, изображенных на рисунке 2, и данных таблицы 2 видно, что стандартная версия допускает возможность разряда только до -20°С, и при этом потеря емкости составляет 15…17%. Потеря емкости несущественна, но и предельная температура (-20°С) невелика для северного климата.

Таблица 2. Емкость Li-Pol и стандартных аккумуляторов в зависимости от температуры

Версия батареи/температура Энергоемкость батареи при разных рабочих температурах, %
60°С 25°С -20°С -40°С
Стандартная батарея 98 98 83
Низкотемпературная (LC) 98 98 98 98

У новой LC-серии аккумуляторов также снижается емкость при отрицательной температуре, и снижение составляет 25…28%, но уже при температуре -40°С, что является весьма неплохим показателем. Принимая во внимание, что стоимость Ватт*часа новой серии АКБ выше стандартной версии примерно на 18…25%, можно утверждать, что EEMB имеет линейку очень перспективных аккумуляторов для применения в суровом российском климате.

Новые аккумуляторы допускают не только разряд при отрицательной температуре, но и возможность заряда. АКБ можно заряжать при температуре до -10°С током 0,2C. Однако зарядить в таких условиях его можно только до 70% от номинальной емкости (в технических данных эта информация отсутствует).

Немаловажным параметром низкотемпературных аккумуляторов является изменение их свойств при низкой температуре хранения. На рисунке 3 изображена зависимость емкости от температуры хранения при 20°С (красная линия) и -40°С (зеленая линия). Время хранения аккумуляторов составляло 15 суток, за эти дни емкость при 20°С уменьшилась на 5…6%, при -40°С – на 48%. Затем аккумулятор был заряжен при температуре 0°С, и вновь была проверена его емкость (рисунок 4). Значение емкости оказалось на уровне 99% от первоначального значения.

Рис. 3. График зависимости емкости аккумулятора от температуры хранения при 20°С и -40°С

Нужно отметить, что получены весьма неплохие результаты, так как -40°С для аккумулятора – это очень суровые условия, и то, что он за пятнадцать дней сохранил половину своей емкости, а при последующем заряде его емкость практически полностью восстановилась, говорит о высоком качестве продукции EEMB.

Рис. 3. График зависимости емкости аккумулятора от температуры хранения при 20°С и -40°С

Заключение

Существует ряд приложений, для которых весьма актуальна возможность работы при отрицательной температуре, например, для портативной аппаратуры, средств радиосвязи, контрольно-измерительной и контрольно-диагностической аппаратуры, устройств индивидуальной сигнализации (электронный маяк спасателя) и тому подобного. Для таких приложений, из соображений оптимального сочетания цены/качества, наилучшим образом подойдет продукция компании EEMB.

Производителей литиевых АКБ в мире достаточно много, их технологии изготовления и сама продукция могут существенно различаться. Однако не все они имеют в своей линейке продукции морозостойкие АКБ, актуальность которых для целого ряда областей применения очевидна. Наличие подобных АКБ в номенклатуре компании EEMB еще раз подтверждает ее статус производителя высококачественной продукции.

Современные литий-полимерные аккумуляторы обеспечивают удельные характеристики, сравнимые с характеристиками литий-ионных аккумуляторов, а благодаря отсутствию жидкого электролита они более безопасны.

При всех стандартных проверках на безопасность использования (перезаряд, форсированный разряд, короткое замыкание, вибрация, раздавливание и протыкание) Li-pol-аккумуляторы имеют существенно более высокие показатели по сравнению с литий-ионными аккумуляторами с жидким электролитом. Перспективы серьезного расширения производства Li-pol-аккумуляторов и использования их в самых разнообразных областях техники не вызывают сомнений.

С появлением элементов литий-полимерных аккумуляторных батарей толщиной всего в 1 мм перед конструкторами электронных устройств открылись новые возможности в отношении конечной формы и размеров новой аппаратуры. Были убраны многие ограничения касательно микроминиатюризации радиоэлектронных устройств.

Источник

Эксплуатация свинцово-кислотных аккумуляторных батарей при отрицательных температурах

Условия эксплуатации свинцово-кислотных аккумуляторных батарей будь то в составе резервных источников питания, применяемых в системах автоматики и телемеханики на видах транспорта, телекоммуникационного оборудования и оборудования связи, охранных и пожарных систем безопасности и других устройств предусматривают различное их размещение и монтаж непосредственно на самих объектах эксплуатации. Если свинцово-кислотные аккумуляторные батареи расположены внутри помещений в специально оборудованных аккумуляторных комнатах с системами отопления, вентиляции и кондиционирования, то условия их работы, как правило, мало чем отличаются от тех, которые предписаны заводом-изготовителем. Условия эксплуатации батарей в наружных шкафах, где практически нет разницы с температурой внешней среды, заслуживают отдельного внимания. В этом случае не всегда выполняются требования к режиму заряда аккумуляторов, они часто эксплуатируются при низких и даже отрицательных температурах. Это, в свою очередь, ограничивает не только доступную разрядную емкость аккумуляторных батарей, но и зачастую ведет к постоянному недозаряду последних.

Все технические характеристики свинцово-кислотных аккумуляторов, включая проектируемый срок службы, определены для эталонной температуры 20° (как правило, для европейских производителей) или 25°С (преимущественно для производителей Юго-Востока Азии) в зависимости от серии батарей и производителей. Поддерживать эту температуру в течение всего срока службы очень сложно, поэтому рекомендуемая температура эксплуатации без использования поправочного температурного коэффициента варьируется в пределах 10-30°С. Для многих типов аккумуляторов в этом диапазоне не требуется регулирование напряжения заряда с применением температурного коэффициента.

Зависимость емкости аккумулятора от температуры

Как уже отмечалось выше, условия работы батареи в наружных шкафах существенно отличаются от рекомендуемых производителем. В зимний период в зависимости от региона температура в них может опускаться ниже -50°С. Поэтому при этих условиях заряд аккумуляторных батарей, как правило, производят повышенным напряжением из расчета на 0,003 В/°С, отличной от рекомендованной заводом-изготовителем.

При эксплуатации свинцово-кислотных аккумуляторов при пониженной температуре ограничивается их допустимая разрядная емкость.Для свинцово-кислотных аккумуляторных батарей герметизированного исполнения («AGM» и «GEL») примерные данные зависимости емкости в процентном соотношении от температуры окружающей среды представлены в таблице.

Примерный график зависимости отдаваемой емкости (Сразр.) в процентном соотношении к номинальной емкости от температуры (°С) представлен на Рис. 1. Если исходить из того, что 100% емкость батареи соответствует температуре 25°С, то из графика видно, что с понижением температуры отличной от 25°С отдаваемая емкость аккумуляторных батарей падает, а с повышением, наоборот, возрастает.

Такое поведение свинцово-кислотного аккумулятора объясняется обратной зависимостью его внутреннего сопротивления от температуры. Величина сопротивления возрастает, прежде всего, за счет ухудшения проводимости электролита, а также по мере разряда аккумулятора. Это связано с тем, что при отрицательных температурах снижается скорость диффузии ионов электролита (и его концентрации в порах активной массы), проводимость самой активной массы и сепаратора. При этом уменьшается электропроводность в целом.С увеличением внутреннего сопротивления усиливается поляризация и создаются условия для образования мелкокристаллических плотных осадков сульфата свинца, вызывающих пассивирование отрицательного электрода.

Если вспомнить Закон Ома для полной цепи (I= ε/R+r), который устанавливает связь между силой тока, электродвижущей силой (ЭДС) и внешним и внутренним сопротивлением в цепи, то видно, что чем выше внутреннее сопротивление (особенно электролита), а оно повышается с понижением температуры, тем меньше отдаваемый аккумуляторной батареей ток, а соответственно и емкость самой батареи.

Динамика снижения напряжения аккумулятора при разряде зависит от изменения ЭДС элемента, динамики роста его внутреннего сопротивления, а также величины тока разряда. Иными словами, чем ниже температура аккумулятора и больше ток разряда, тем быстрее упадет напряжение на его выводах и, соответственно, меньше окажется снятая емкость. Возникает эффект так называемой «кажущейся» потери емкости, когда запас непрореагировавших активных веществ еще достаточен, а разряд приходится прекращать из-за недопустимого снижения напряжения на выводах батареи.

Точка замерзания электролита

С понижением температуры увеличивается вязкость электролита, что затрудняет его проникновение в поры глубоких слоев активной массы пластин. При этом поверхностные слои активной массы быстрее преобразуются в PbS04 и кристаллы PbS04 закрывают поры активной массы, а поэтому химическая энергия, запасенная в глубоких слоях активной массы пластин, полностью не используется и разрядная емкость батареи понижается. При понижении температуры электролита ниже +25 °С емкость аккумуляторной батареи при ее разряде силой тока, соответствующей 0,05Сном., уменьшается на 1% на каждый градус понижения температуры, а при большей силе разрядного тока — на большую величину.

Более того, работа аккумуляторной батареи при низких отрицательных температурах связана с опасностью замерзания электролита. Электролит свинцово-кислотного аккумулятора представляет собой водный раствор серной кислоты и непосредственно участвует в токообразующих реакциях. Из-за того, что при разряде расходуются молекулы серной кислоты и образуются молекулы воды, плотность электролита постепенно снижается.

Оценивая работоспособность аккумулятора при отрицательных температурах, необходимо учитывать не только номинальную (начальную) плотность его электролита, но и плотность в конце разряда при снятии расчетной емкости.

Начальная плотность электролита полностью заряженного аккумулятора зависит от его конструкции и технологии производства. Например, аккумуляторы со свободным электролитом в зависимости от модели могут иметь номинальную начальную плотность: 1,22; 1,24; 1,26 кг/л. Температуры замерзания электролита этих полностью заряженных батарей составляют: -32; -42 и -54°С, то есть аккумулятор с электролитом плотностью 1,24 кг/л нельзя разряжать при температуре ниже -40°С

-45°С из-за угрозы его замерзания. Поэтому эксплуатация батареи при температуре ниже точки замерзания электролита полностью заряженного аккумулятора недопустима.

Область замерзания электролита примерно одинакова для всех типов свинцово-кислотных аккумуляторных батарей. Усредненный график зависимости температуры замерзания электролита от плотности электролита представлен на рис. 2.

Кроме этого, в зависимости от температуры следует ограничивать глубину ее разряда. Чем ниже температура эксплуатации, тем меньше допустимая глубина разряда. Поэтому при отрицательной температуре приходится использовать аккумуляторы с повышенной номинальной емкостью.

Таким образом, если предполагается эксплуатировать свинцово-кислотные аккумуляторы при пониженной температуре, то при расчете и выборе батареи необходимо предусмотреть запас по емкости.

Ограничение отбора емкости батареи при отрицательной температуре — это принудительная остановка разряда или снятие с аккумуляторов определенного количества электричества. Более экономичное и технологичное решение — использование подогреваемых батарейных шкафов, особенно в регионах с холодным климатом. В идеальных условиях температура в них не должна опускаться ниже 5°С. Это предотвратило бы опасность замерзания электролита и ограничило коэффициент запаса номинальной емкости относительно разрядной. Но даже поддержание температуры в шкафу в пределах оптимальной существенно облегчит выбор батареи и сделает ее работу более предсказуемой.

Оставьте свои контактные данные, и наши специалисты свяжутся с вами, для консультации или оформления заказа

Источник

Оцените статью