Как выбрать мощность вэу
Все цены на сайте реальные | Тел. 8-910-710-52-55 (мтс) electroveter@mail.ru | Возможна оплата ветрогенератора при получении |
Ниже изложены общие рекомендации, а подробнее задача выбора ветрогенератора изложена в разделе «Вопрос-ответ».
1. Ветрогенератор нужно выбирать только по кВт*часам в месяц, а не по кВтам – 2-кВтный ветряк с 4-5-кВтным инвертором вполне может обеспечить ваш дом. И нужно обязательно добавить 10-20% на потери энергии в аккумуляторах. Но, с другой стороны, не нужно брать с большим запасом – оборудование всё-таки достаточно дорогое.
Для выбора ветрогенератора сначала Вам необходимо определить своё потребление в кВт*часах в месяц, пиковую(суммарную) мощность всех приборов и постараться узнать среднегодовую скорость ветра в Вашей местности.
2. Для получения электричества в необходимом объёме нужно понимать, что количество вырабатываемой ветряком энергии напрямую зависит от ометаемой площади или максимального сечения ветродвигателя. Для минимального обеспечения пары лампочек, ТВ, холодильника, электрочайника — диаметр ветряка должен быть не менее 2,5 метров при средних по силе ветрах.
3. Особое внимание стоит уделять не только мощности ВЭУ (именно ВЭУ, а не инвертора, входящего в комплект), но и при какой скорости ветра эта мощность может быть получена. Некоторые продавцы представляют завышенные показатели. Для этого не поленитесь подсчитать по несложной формуле мощность, которую способен отдать ветряк с винтом конкретного диаметра. Эта мощность практически зависит только от скорости ветра V и диаметра винта D, а все остальные факторы — количество лопастей, их вес, площадь, профиль, крутка, генератор, подшипники и т.д. — второстепенные и большой погрешности не дают. Упрощенная формула расчета реально отдаваемой ветром мощности в зависимости от скорости ветра и диаметра винта: Р = D 2 V 3 /7000 кВТ, с точностью ±20 % (зависит от КПД винта и генератора). + 20% — идеальная ВЭУ, ее цена увеличится в 2-3 раза. — 20% — первый ветряк энтузиаста-любителя. При равной мощности ВЭУ выбирайте ту, у которой диаметр ветроколеса больше.
4. Как это не парадоксально, но чем меньше лопастей в ветроколесе, тем выше его КПД. Это проверено как теоретическими исследованиями, так и продувками в аэродинамической трубе, хотя разница между 1, 2, 3 лопастями незначительна.
5. Использовать ветрогенератор для отопления дома вряд ли получится при наших морозных зимах и небольших ветрах. Отопление от обычного электричества само по себе достаточно дорого, а от автономных источников электроэнергии получается ещё в несколько раз дороже. Исключение составляют отдельные случаи негарантированного подогрева – поддержания чуть больше нуля градусов, а также небольших помещений или при постоянных сильных ветрах – от 5 м/с среднегодовой скорости ветра.
6. Вертикально-осевые ветроустановки имеют право на жизнь, но наукой и опытом давно доказана их очень низкая эффективность по сравнению с горизонтально-осевыми. Это примерно как гребные колеса у дореволюционных пароходов по сравнению с обычным винтом любого современного корабля или катера.
Основные недостатки вертикальноосевых ветрогенераторов:
а) Низкий КПД – 20-30% по сравнению с 40-50% у горизонтальноосевых.
б) Низкая скорость вращения при одинаковой скорости ветра – в 3-5 раз ниже . – а это значит что генератор должен быть в 3-5 раз более мощный и соответственно его цена будет настолько же больше, а генератор в ветряке – это 70-80% стоимости.
в) Высокая материалоёмкость – большая и тяжёлая конструкция, что делает его дороже в изготовлении, а большой вес и динамические нагрузки требуют более мощной и дорогой мачты. Кроме того вертикальный ветряк массой в 2-3 раза больше и работающий с большими нагрузками безопасно поднять получится на гораздо меньшую по высоте мачту, где скорость ветра будет раза в 1,5-2 меньше, что существенно уменьшит и его энергоотдачу.
г) Основное рекламируемое преимущество – бесшумность – достигается за счёт низкой скорости вращения, а в случае с лопастными вертикальными ветряками, где скорость вращения сопоставима с горизонтальноосевыми ветрогенераторами, шум наоборот будет больше, поскольку здесь уже вся лопасть движется по максимальному кругу, создавая при этом ещё и два шумных концевых срыва потока на каждой лопасти, вместо одного у лопасти горизонтального ветряка.
7. Не стоит увлекаться поиском ВЭУ, начинающих работать на малых скоростях ветра — до 3 м/с, так как на этих скоростях ветра его энергия ничтожно мала. Например, для ВЭУ с диаметром винта 5 м выдаваемая мощность при скорости ветра 2 м/с будет менее 30 Вт минус половина этой мощности уйдет на всякие потери, а оставшиеся 15 Вт – это ноль для аккумуляторов, рассчитанных на 5кВт. Так что кроме наслаждения от вращения ВЭУ вы больше ничего не получите.
ООО «Ветрострой»
215500, Россия, Смоленская обл.,
г.Сафоново, ул.Дзержинского, 14, стр.2
Источник
Расчет выработки энергии ветрогенераторной станцией
Ветрогенератор в автономной системе очень нужен. По большей части тем, что его выработка не имеет ярко выраженной зависимости от сезонов. Солнечные батареи, в наших широтах, хорошо работают летом и плохо зимой, тогда как ветрогенераторы сохраняют свою эффективность в зимний период. Немало важно то, что сильные ветра, как правило, наблюдаются в пасмурную погоду, поэтому совместное применение ветрогенераторов и солнечных панелей достаточно обоснованно. В этой статье мы рассматриваем малые ветроэнергетические установки (ВЭУ) т.е. установки мощностью от 40 Вт до 20 кВт.
Ветрогенераторы достаточно эффективны в прибрежных районах, либо на возвышенностях, где скорости ветра выше и ветра чаще. На большей части территории России средняя скорость ветра составляет 4-5 метров в секунду, что создает неблагоприятные условия для применения ветрогенераторов (и это на высоте 10 м от поверхности земли, стандартная высота расположения анемометра на метеостанциях). Но данные усреднены, поэтому следует изучить энергопотенциал конкретной местности, если существует подозрение, что ветрогенератор может быть эффективен.
Основная проблема ветровых станций заключается в том, что их эффективность мала при низких скоростях ветра. Если внимательно посмотреть на кривую зависимости мощности от скорости ветра, то можно обнаружить следующее: стартовая скорость большинства современных ВЭУ располагаться в пределах 3 — 4 м/с. Но необходимо, чтоб ветровой поток продержался на этом уровне не наименее 10 мин, лишь тогда автоматика даст позволение на запуск ВЭУ. При этом более-менее ощутимая, выработка энергии начнется только при 7 метрах в секунду, а ВЭУ, трудящаяся при средней скорости 6 м/с, генерирует емкость на 44 % большую, чем при скорости 5 м/с…
Многие хотят уменьшить начальную скорость ветра при котором начинается вращаться турбина до 1-2 м/с — мол слабый ветер бывает всегда и пусть в аккумуляторы всегда что-то «капает». Однако, при такой скорости ветер имеет ОЧЕНЬ мало энергии. Если ветрогенератор и вся система рассчитаны на 3-5кВт, то 5-10 Вт не решат никаких проблем.
Перейдем теперь к методам расчета систем с ветряными электростанциями. Покупая устройство, вы будете знать его заявленную номинальную мощность, а также найдете в инструкции график зависимости мощности вырабатываемой «ветряком» от скорости ветра.
Из формулы P=( η*КИЭВ* ρ*V 3 *π*D 2 )/8 видно, что мощность ветрового потока пропорциональна кубу скорости ветра и квадрату диаметра колеса турбины. Это означает, что при увеличении скорости ветра вдвое, мощность потока возрастет в 8 раз, а при увеличении длины лопастей вдвое, мощность ветрогенератора возрастет в 4 раза.
В таблице приведены величины мощности ветровой турбины, в зависимости от скорости ветра и диаметра колеса турбины. Коэффициент эффективности турбины k = 0,25.
V м/с | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
P Вт d = 1м | 3 | 8 | 15 | 27 | 42 | 63 | 90 | 122 | 143 |
P Вт d = 2м | 13 | 31 | 61 | 107 | 168 | 250 | 357 | 490 | 650 |
P Вт d = 3м | 30 | 71 | 137 | 236 | 376 | 564 | 804 | 1102 | 1467 |
P Вт d = 4м | 53 | 128 | 245 | 423 | 672 | 1000 | 1423 | 1960 | 2600 |
P Вт d = 5м | 83 | 196 | 383 | 662 | 1050 | 1570 | 2233 | 3063 | 4076 |
P Вт d = 6м | 120 | 283 | 551 | 953 | 1513 | 2258 | 3215 | 4410 | 5866 |
P Вт d = 7м | 162 | 384 | 750 | 1300 | 2060 | 3070 | 4310 | 6000 | 8000 |
P Вт d = 8м | 212 | 502 | 980 | 1693 | 2689 | 4014 | 5715 | 7840 | 10435 |
P Вт d = 9м | 268 | 635 | 1240 | 2140 | 3403 | 5080 | 7230 | 9923 | 13207 |
P Вт d = 10м | 331 | 784 | 1531 | 2646 | 4200 | 6270 | 8930 | 12250 | 16300 |
Вы видите, как сильно возрастает величина мощности ветрового потока при увеличении скорости ветра только на 1 м/с.
Прежде чем звонить в компанию занимающуюся продажей ветрогенераторных установок надо узнать две цифры:
1) Потребление электроэнергии в месяц в киловатт-часах — все платят за электричество в квартирах или домах ежемесячно и эта цифра поможет оценить Ваши потребности.
Можно эту цифру посчитать примерно и самому, например:
1. Лампочка (сразу лучше меняйте на энергосберегающие или LED) — 20Вт — эквивалент 100Вт обычной (1кВт — это 1000Вт, то есть 20Вт — это 0,02кВт) горит 5 часов в день, поэтому мощность в кВт умножаем на часы работы в месяц — 0,02 * 5 * 30(дней в месяце) = 3кВт*часа в месяц.
2. Холодильник 300Вт, работает примерно 30% времени, то есть 8 часов в сутки — 0,3 * 8 * 30 = 72кВт*часа в месяц.
3. Электрочайник 1,5 кВт, работает 0,5 часа в день — 1,5 * 0,5 *30 = 22,5кВт*часа в месяц
И так далее по всем приборам.
Потом всё суммируете — 3 + 72 + 22,5 = 97,5кВт*час в месяц.
Это и есть месячное потребление — примерно 100кВт*час в месяц в данном примере.
2) Среднегодовая скорость ветра в предполагаемом месте установки — её можно приблизительно узнать в ближайшей метеостанции.
Для выбора инвертора надо знать максимальную (пиковую) мощность потребления электроприборов с небольшим запасом — по ней выбирается его мощность. При наличии этих показателей можно быстро и грамотно подобрать необходимое оборудование, обратившись к продающей его организации.
При выборе оборудования не стоит опираться на мощность ветрогенератора — она сильно зависит от скорости ветра. Это только в бензогенераторе она соответствует указанной в паспорте. 5кВт ветрогенератор при слабом ветре (3-4м/с) выдаёт всего 0,1-0,2 кВт.
Очень часто покупатель ориентируется на максимальную (пиковую) мощность своего потребления и просит постоянно эту мощность — например 5кВт, как в бензогенераторе, например — начинаем разбираться, считать — и оказывается, что для лампочек, холодильника, телевизора и насоса вполне хватает 0,5кВт постоянной мощности — а это две большие разницы. Оценивать своё электропотребление нужно только по киловатт — часам в месяц.
Но и не стоит определять среднюю выдаваемую ветрогенератором мощность по среднегодовой скорости ветра — это будет намного заниженная цифра.
Существует атлас ветров России, в котором есть данные по ветру в 332 метеостанциях. «Роза ветров» так часто употребляемая обывателем в данной теме к ней относится «поскольку-постольку» — это статистика по направлениям ветра, а ветрогенератору всё равно — как часто с какой стороны дует. А вот при определении места установки ветрогенератора «Розу ветров» лучше учитывать, чтобы на направлении основных ветров не оказались высокие строения, деревья и прочие препятствия.
Выбор мачты
Какую мачту выбрать — с растяжками или без?
Если место позволяет, то лучше ставить мачту с растяжками — она будет стоить в 3-5 раз дешевле мачты без растяжек. В настоящее время накоплен уже довольно богатый опыт установки мачт для ветрогенераторов на территории РФ и он позволяет утверждать об этом однозначно.
Иногда предлагают телескопические мачты — они удобны при частых подъёмах и опусканиях, в чём нет особой необходимости при использовании с ветрогенератором. Мощный ветряк на неё не поставишь — не более 1-2кВт, зато стоить она будет намного дороже.
Какой высоты должна быть мачта?
При выборе высоты мачты учитывается рельеф, растительность (близость леса и отдельно стоящие деревья) и застроенность местности. Обычно это от 10 до 20 метров.
- Если местность открытая — практически на поле, например, то вполне хватит мачты высотой и 10м.
- Если местность застроена одноэтажными домиками и имеет небольшие деревья — больше подойдёт 15м мачта.
- Если же рядом двухэтажные дома и высокие деревья или лес — то лучше ставить мачту высотой 20м.
Для ветрогенераторов 1-4кВт мы предлагаем 8 и 12м мачты, поскольку более высокие стоят достаточно дорого для данного класса оборудования.
Конечно, чем выше мачта, тем лучше (чем больше высота — тем сильнее ветер, прямая зависимость), но не всегда более высокая мачта технически или экономически оправдывает себя. Посоветуйтесь со специалистом — обычно простого описания по телефону будет достаточно для определения оптимальной высоты мачты. При выборе высоты мачты учитывается рельеф, растительность (близость леса и отдельно стоящие деревья) и застроенность местности. Обычно это от 10 до 20 метров.
- Если местность открытая — практически на поле, например, то вполне хватит мачты высотой и 10м.
- Если местность застроена одноэтажными домиками и имеет небольшие деревья — больше подойдёт 15м мачта.
- Если же рядом двухэтажные дома и высокие деревья или лес — то лучше ставить мачту высотой 20м.
Высота мачты практически не зависит от мощности ветрогенератора (от 1 до 10кВт). Для ветрогенераторов 1-4кВт мы предлагаем 8 и 12м мачты, поскольку более высокие стоят достаточно дорого для данного класса оборудования.
Все вышесказанное относится к мачтам для ветровых генераторов с горизонтальной осью вращения. Для ветровых генераторов с вертикальной осью вращения при выборе мачты существуют свои резоны, в данной статье не рассматриваемые.
Источник