Как солнечные батареи высоким

Размеры солнечных батарей и другие их параметры: на что необходимо обратить внимание?

В предварительном расчете любой СЭС одной из важнейших характеристик являются размеры солнечных батарей. Исходя из длины, ширины и общего количества этих элементов будет определяться конфигурация их размещения на крыше или участке. Не менее принципиален и ряд других параметров – тип полупроводникового материала ячеек, категория качества, мощность панелей и станции в целом, и т.д. Поэтому перед покупкой следует внимательно изучить все основные показатели.

Площадь солнечной батареи и габариты отдельных ячеек

Гелио модуль представляет собой гибкую или жесткую конструкцию прямоугольной формы, основу которой составляют ряды полупроводниковых ячеек. Каждая из них генерирует напряжение около 0,5-0,6V и может иметь различные типоразмеры. Наиболее распространены следующие варианты габаритов (в миллиметрах):

Например, модуль Sunways ФСМ-270П из 60 ячеек (по 10 в длину и 6 – ширину) размером 156 × 156 мм каждая имеет размеры, с учетом рамы, 1640 × 992 мм. Площадь такой солнечной панели составит чуть больше 1,6 м2.

При монтаже необходимо устанавливать модули таким образом, чтобы не допустить частичного затенения одним рядом батарей соседнего. В связи с этим на одну панель 250 – 400 ватт обычно выделяется 1,5 — 2 квадратного метра пространства.

Читайте также:  Вентиляторы вытяжные солнечной батарее

Устройство солнечной панели

Конструктивно каждый модуль состоит из следующих составляющих:

  • жесткая или гибкая подложка;
  • несколько рядов уложенных вплотную полупроводниковых ячеек, разделенных токопроводящими дорожками;
  • рама по периметру, удерживающая ячейки вместе (в некоторых современных моделях отсутствует);
  • полностью герметичное, защитное поверхностное стеклянное или полимерное покрытие с антибликовыми свойствами;
  • выходные кабели для подключения к соседним модулям и электрической сети.

От размера и КПД солнечных батарей зависит их совокупная мощность. В настоящий момент выпускаются панели от десятых долей до 500 ватт. Наиболее легкие и компактные варианты используются в небольших автономных устройствах – часах, фонариках, туристических «кейсах» и т.д. Полноразмерные крупные модули служат основой частных и промышленных солнечных электростанций производительностью от нескольких сотен до миллионов киловатт-часов.

Виды солнечных батарей и их особенности

На эффективность фотоэлектрических ячеек огромное влияние оказывает тип полупроводника, отвечающего за преобразование излучения в электрический ток. Сегодня на рынке преобладают панели, созданные на базе:

  • монокристаллического кремния Mono-Si;
  • поликристаллического кремния Poli-Si.

Значительно реже в устройстве солнечных панелей применяются малопроизводительный аморфный кремний, редкоземельные элементы (например, теллурида кадмия Cd-Te) и дорогостоящие «аэрокосмические» германиево-галлиевые батареи типа CIGS. На стадии прототипов активно исследуется фотовольтаика следующего поколения, с использованием органики и минеральных перовскитов.

1. Монокристаллические.

Изготавливаются из выращенных методом Чохральского кремниевых кристаллов высокой степени очистки. Выдают максимальный КПД 22-24% при идеальных условиях освещения – ярком солнце, ориентации на юг и оптимальных углах наклона. Рекомендуются к установке в наиболее солнечных регионах на крышах домов и земляных участках, позволяющих провести размещение, близкое к оптимальному. Эффективный срок службы 25-30 лет.

2. Поликристаллические.

Отличаются от монокристаллов другим методом кристаллизации. Технология выращивания делает рабочую поверхность не гладкой, а «игольчатой». Это несколько снижает продуктивность поглощения при прямом солнце, но повышает (по данным многих исследований) производительность в не самых благоприятных условиях. При работе в средней полосе, при неидеальном положении относительно солнца среднегодовая генерация солнечных панелей данного вида с КПД 18-20% лишь немного уступает Mono-Si. Срок службы составляет 20-25 лет, но цена таких батарей на 8-10% ниже.

3. Тонкопленочные.

Такие виды солнечных панелей последних поколений тоньше и легче классических моделей, за счет гибкости могут устанавливаться на криволинейные поверхности. Они наименее чувствительны к ухудшению условий освещения и обладают самым низким температурным коэффициентом. Максимально удобны в миниатюрных мобильных солнечных станциях, активно используются автотуристами и любителями многодневных походов пешком или на лодках.

Категории качества фотоэлектрических панелей

Помимо размера, номинальной мощности и КПД солнечных батарей, критически важной характеристикой является качество их исполнения. На гелио рынке по данному показателю модули делятся на четыре категории.

Первая – Grad A.

Характеризуется наивысшим качеством. Производится компаниями из всемирно известного ТОП рейтинга TIER-1 от Bloomberg. Отличительные черты:

  • минимальная степень деградации ячеек со временем;
  • идеальная внутренняя кристаллическая структура;
  • однородная поверхность без цветовых перепадов и дифракционной картины;
  • полное отсутствие сколов, микротрещин и скрытых дефектов.

Вторая – Grad B

Первой категории солнечных батарей по характеристикам уступает незначительно. Отличается:

  • наличием небольших перепадов насыщенности цветового оттенка;
  • несколько большей скоростью деградации.

Производители – менее престижные, но хорошо зарекомендовавшие себя на рынке компании, преимущественно из юго-восточной Европы, Турции и Китая.

Третья – Grad С

Категория представлена панелями «no name» фирм из Поднебесной или европейской б/у продукцией. Характерные признаки:

  • визуально различимые небольшие поверхностные дефекты;
  • цветовая неоднородность поверхности;
  • невысокий срок эксплуатации.

Несмотря на существенно сниженную стоимость, для полноценных новых СЭС использовать такую продукцию не рекомендуется.

Четвертая – Grad D

Включает все виды солнечных батарей с низким КПД и непредсказуемым сроком службы. Отличительные черты:

  • большое количество явных дефектов;
  • некачественная пайка;
  • сильные перепады цвета.

Ввиду невозможности оценить эффективность и длительность использования, покупка нежелательна даже для второстепенных целей. Приобретаются обычно на запчасти.

Солнечные батареи – прочие важные характеристики

Среди прочих наиболее принципиальных параметров фотоэлектрических панелей выделяют следующие показатели.

Представляет собой допустимое положительное и отрицательное отклонение от номинальной мощности. Например, обозначение 300  3 Вт означает толеранс, соответствующий 1%.

2. Температурный коэффициент.

Одной из особенностей полупроводниковых ячеек является снижение эффективности при сильном перегреве панелей. Для элементов на базе кремния падение составляет около 0,4-0,5% на каждый градус выше 25°C. Под прямыми лучами летнего солнца рабочая поверхность способна нагреваться до 65-75°C, что соответствует снижению КПД на 20-25%. Редкоземельные солнечные батареи малочувствительны к высоким температурам, их температурный коэффициент в несколько раз ниже.

Диапазон рабочих температур всех типов высококачественных модулей примерно одинаков и колеблется в пределах от – 45°C до +90°C.

С течением времени фотоэлектрические ячейки постепенно теряют свою эффективность. На графике процесс деградации выглядит как гиперболическая кривая. У качественных панелей категории Grad A падение производительности составляет 2-3% в первый год, до 10% за 10 лет и до 20% спустя 25-30 лет. Солнечные батареи не столь высокого качества деградируют быстрее.

4. Фотоэлектрическая чувствительность к интенсивности освещения.

Худшими показателями в этой категории обладают монокристаллические ячейки, у которых снижение эффективности при падении яркости освещения максимально. Поликристаллические элементы на 3-4% менее чувствительны.

5. Удельная эффективность.

Измеряется как отношение номинальной мощности к единице площади. У монокристаллов она максимальна, поскольку эти солнечные панели характеризуются наивысшим КПД и сроком эксплуатации. Для достижения тех же показателей СЭС на базе Poli-Si потребуется большая площадь и размеры отдельных модулей.

6. Защитное покрытие.

В дешевых моделях лицевая рабочая сторона закрывается обычным стеклом. Дорогостоящие модули премиального класса комплектуются сверхпрочной каленой разновидностью. Сами ячейки покрываются специальной пленкой EVA, а тыльная часть батареи – полиэтиленом высокой плотности ПЭТ.

Источник

Как выбрать солнечные батареи. Советы покупателю

Солнечная батарея — устройство, преобразующее солнечное излучение в электрическую энергию. Впервые метод работы солнечной батареи был разработан 1839 году физиком Александром Беккерелем. Практическое применение метод получил в 1873 после изобретения первого полупроводника. Технология использования энергии солнца в целях ресурсообеспечения приобретает все большую популярность по всему миру. Получаемый вид энергии является возобновляемым, финансовые затраты при эксплуатации солнечных батарей очень низкие — средства требуются только на покупку и установку оборудования. Энергия, вырабатываемая этим источником, является дешевой и доступной и благодаря этому широко используется по всему миру. И если вы решили приобщиться к обществу «зеленой энергетики», то начать надо из того, чтобы разобраться — как правильно выбрать солнечные батареи для частного дома, дачи или даже квартиры.

Как устроены солнечные батареи?

Стандартная солнечная батарея состоит из алюминиевой рамы, солнечных элементов, специального стекла, подложки, токоведущих жил и распределительной коробки.

Рис. 1 Устройство солнечной батареи

Рама панели — алюминиевая конструкция, придающая жесткость изделию и образующая основу для остальных деталей батареи. Солнечные элементы — кремниевые полупроводниковые фотоэлектрические преобразователи, выращиваемые, как правило, монокристаллическим или поликристаллическим методом. Использование полупроводниковых преобразователей дает возможность прямого, одноступенчатого преобразования энергии, что позволяет использовать солнечные батареи наиболее эффективно.

В солнечной батарее используется фотовольтаический эффект, возникающий в неоднородных полупроводниковых структурах при контакте с солнечным излучением. Неоднородность полупроводникового слоя солнечной батареи достигается легированием одного полупроводникового слоя различными примесями или соединением нескольких слоев полупроводников с различной шириной запрещенной зоны — созданием гетеропереходов. Также методом получения неоднородных кремниевых полупроводников является изменение химического состава полупроводника. Эффективность использования фотопроводника характеризуется оптическими свойствами проводника, одним из которых является фотопроводимость. Потери энергии при работе солнечных батарей связаны с несколькими процессами: частичным отражением солнечных лучей от поверхности преобразователей; прохождением части лучей, через фотопреобразователи без поглощения в них; рассеянием избыточной энергии фотонов на тепловых колебаниях решетки; внутренним сопротивлением преобразователей.

Выбор параметров солнечной батареи

При выборе солнечной батареи перед покупателем встает вопрос «Как выбрать подходящую солнечную батарею?» Существует несколько видов фотоэлементов, имеющих свои преимущества и недостатки:

  1. Поликристаллические элементы, в которых полупроводник производится поликристаллическим способом, этот метод удешевляют солнечную батарею, но снижают эффективность её работы. КПД элементов составляет 17-19%.
  2. Монокристаллические. Если элементы выращиваются монокристаллическим способом, то КПД фотоэлементов составляет 20-21%. Стоимость батарей при таком способе производства кремния увеличивается, но площадь фотоэлементов для получения энергии того же количества снижается. Готовые солнечные батареи, изготовленными поликристаллическим способом имеют КПД 13-17 %, а с фотоэлементами, изготовленными монокристаллическим способом — КПД 15-18,5%,
  3. Аморфные. Самым низким КПД (4-6%) обладают солнечные батареи, в которых фотоэлементы изготавливают из аморфного кремния.
  4. Арсенид галлиевые. Для изготовления высокоэффективных преобразователей в настоящее время широко используются GaAs — Арсенид галлия, имеющий гетероструктуру и более широкую запрещенную зону, это позволяет увеличить КПД солнечных батарей до 35-40%, правда такой тип элементов имеет очень высокую цену и используется только в космической отрасли.

Рис. 2 Типы солнечных элементов

На что обратить внимание при выборе солнечных батарей?

При выборе солнечных батарей для частного дома или дачи необходимо обратить внимание не только на КПД батареи, которое в современных конструкциях на основе кремниевых элементов, ограничивается величиной 20-21%, но и на суммарную мощность купленной солнечной электростанции. Она должна обеспечить электроэнергией, достаточной для потребления электросистемой дома в любую погоду.

Зимой сильно снижается длительность светового дня, поэтому в регионах, где это наблюдается, необходимо делать запас мощности, чтобы батарей хватало на то время, когда солнце менее активно. Почему выработка зимой меньше? Не нужно думать, что из-за холода батарея будет хуже работать. Негативное действие на эффективность работы оказывают осадки в виде снега, которые необходимо удалять и меньшая продолжительность светового дня с высокой облачностью – именно это негативно влияет на выработку электроэнергии в зимнее время. Летом солнечная батарея генерирует меньшее напряжение, чем зимой. В жару температура на поверхности гелиопанели может достигать 50–55 °С, что снижает эффективность фотогальванических элементов.

Еще один важный момент при составлении плана «Как выбрать солнечные батареи для домашней электростанции» — эффективность финансовых вложений. Многие батареи при правильном выборе окупаются достаточно быстро, так как производимая при использовании энергии солнца электроэнергия является бесплатной. Выходное номинальное напряжение солнечных батарей кратно 12В и 24В, но бывают и 20В – это панели с 60 элементами. Фактическое напряжение на выходе гелиопанелей, как правило больше номинального. Так гелиопанель с выходным номинальным напряжение, равным 12В, в точке максимальной мощности выдает 17В, а при холостом ходе выдает 23В. Аналогично работают и батареи с номинальным напряжением на выходе 20 В и 24В. Двадцативольтовая батарея выдает напряжение на выходе 30В точке максимальной мощности и 39В — в режиме холостого хода, а двадцатичетырехвольтовая соответственно — 37В и 45В.

Типовые ошибки при выборе солнечных батарей для дома

Собирая себе солнечную электростанцию самостоятельно, чаще всего допускаются ошибки связанные с подбором оборудования, отметим основные из них:

  • Не правильно подобранное напряжение аккумуляторов и солнечных батарей, используемых в одной системе;
  • Использование ШИМ контроллера с 60 ячейковой солнечной панелью;
  • Не учтенный температурный коэффициент, связанный изменением напряжения, при изменении температуры;
  • Использование разных аккумуляторов, при последовательном подключении;
  • Неверно подобранное сечение перемычек между инвертором и АКБ;
  • Пренебрежение защитными устройствами.

После подбора оборудования ошибки дилетантов не заканчиваются, поскольку впереди монтаж. При установке солнечной электростанции своими руками ошибки чаще допускаются такие:

  • Неправильная пространственная установка самих солнечных батарей;
  • Падение тени на ячейки от деревьев и соседних построек;
  • Неверное подключение оборудования. Если в системе даже всего два АКБ, последовательное соединение могут перепутать с параллельным. Не говоря уже о нескольких АКБ, когда требуется сделать последовательно – параллельное соединение. Это касается и подключения солнечных батарей;
  • Плохой контакт в электрических соединениях. Касаемо изготовления перемычек кустарным способом, без применения специального инструмента. Применение скрутки, пайки коннекторов MC4 и другие ненадежные соединения.

Это только самые распространенные ошибки, но на практике их гораздо больше. Если вы решили собирать солнечную электростанцию самостоятельно, проконсультируетесь со специалистами, это поможет избежать ошибки, сэкономить деньги и да, консультацию у нас можно получить бесплатно.

Мнения экспертов о продукции

Выбор типа солнечной станции зависит от задачи, которую необходимо решить с помощью альтернативных источников энергии.

В настоящее время наиболее широко применяются три типа солнечных электростанций:

  1. Автономные. В местах, где нет подключения к центральной сети, в садах, на дачах, автономные солнечные электростанции самые востребованные, хорошо подходят для освещения и других жизненно важных электроприборов. Применение автономных солнечных станций позволяет существенно экономить финансы, на жидкое топливо для генераторов, особенно в районах с большим количеством солнечных дней.
  2. Комбинированные с сетью. Если есть центральная сеть, то не нужно отказываться от нее, лучше сделать систему совместную с сетью. Автоматическая работа инвертора, входящего в состав такой станции, будет самостоятельно выбирать источник питания электрических приборов. А входящие в состав аккумуляторные батареи будут источником резервного электроснабжения, при отключениях сети.
  3. Сетевые on-grid. Сетевые солнечные электростанции самые выгодные и быстро окупаемые, поскольку не имеют в составе аккумуляторных батарей и преобразование энергии происходит с высоким КПД. Более того, позволяют передавать (продавать) излишки генерируемой электроэнергии в сеть, тем самым ускоряя процесс окупаемости. Во многих странах при такой генерации с помощью возобновляемых источников для продажи электроэнергии действует «зеленый тариф». В РФ в 2019 году принят в первом чтении Федеральный закон №581324-7 «О внесении изменений в ФЗ «Об электроэнергетике» в части развития микрогенерации», который позволит реализовывать электрическую энергию, вырабатываемую альтернативными источниками, по специальному тарифу. Покупка гарантирующим поставщиком электроэнергии от объектов микрогенерации будет обязательной. Цена купли-продажи будет равна средневзвешенной нерегулируемой цене на электроэнергию на ОРЭМ. Доходы физических лиц, возникшие при реализации лишней электроэнергии, произведенной для нужд своего домохозяйства, не будут подлежать налогообложению.

Независимо от выбранного типа солнечной электростанции, стоит понимать, что для надежной и эффективной работы лучше приобретать высококачественные солнечные батареи. Несмотря на более высокую стоимость они более эффективны и долговечны. Срок службы батарей может достигать 30 и более лет. Покупатели часто задают вопрос: «Почему выработка зимой меньше?» Не нужно думать, что из-за холода батарея будет хуже работать. Негативное действие на эффективность работы оказывают осадки в виде снега, которые необходимо удалять, плюс меньшая продолжительность светового дня с высокой облачностью – именно это негативно влияет на выработку электроэнергии в зимнее время. Летом солнечная батарея генерирует меньшее напряжение, чем зимой. В жару температура на поверхности гелиопанели может достигать 50–55 °С, что снижает эффективность фотогальванических элементов.

Источник

Оцените статью