Как рассчитать кпд солнечной батареи

КПД солнечных батарей

То что за альтернативной энергетикой и, в частности, солнечными электростанциями будущее, вряд ли у кого вызывает сомнения. Тем не менее потенциальных покупателей всегда интересует вопрос — каков коэффициент полезного действия (КПД) солнечных батарей и как его увеличить? На данный момент эффективность солнечных панелей близка к 22%, и учёные-практики работают над тем, чтобы повысить этот показатель. По сути, именно этот показатель напрямую влияет на то, сколько электроэнергии батарея принесёт в ваш дом.

Что такое КПД солнечных батарей

Практики считают, что КПД упомянутых устройств лучше всего определять как процентное соотношение энергии, которую отдаёт гелиосистема, к той энергии света Солнца, “впитываемого” рабочей площадью ваших панелей. Нужно признать что этот показатель, обычно измеряемый в процентах, за последние 50-60 лет увеличился лишь вчетверо. Хотя признаётся, что их потенциал близок к 90%. Отчего не все 100%? Дело в том, что на эффективность солнечных батарей напрямую влияет несколько факторов:

Характер атмосферных явлений (попросту, погода).

Физические свойства материалов, из которых сконструировано устройство, предназначение которого — улавливать максимально широкий диапазон спектра излучения Солнца.

Фундаментальные принципы работы полупроводников.

По причинам, указанным выше, КПД солнечных батарей в прошлом году составлял:

До 5%, если покупатель отдал предпочтение недорогим плёнкам на аморфном кремнии.

Читайте также:  Где отремонтировать солнечную батарею

От 10% до 18%, если покупатель отдал предпочтение современным гибридным плёночным решениям, использующим соединение 2-х и более редкоземельных элементов.

От 16% до 19%, если покупатель отдал предпочтение модулям из моно- и поликристаллического кремния. Для этого типа панелей характерны потери энергии, связанные с отражением света от самого устройства или его нагревания. Кроме того монокристаллические электростанции более эффективны, но обходятся дороже.

Почти 50%, если покупатель решился приобрести недешёвые многослойные прототипы устройств с дополнительными конструкциями для улавливания солнечных лучей.

Формула расчета эффективности солнечных панелей

Эффективность использования солнечных панелей вычисляется следующим образом:

На исследуемую панель направляют контролируемый свет.

При помощи устройства под названием люксметр фиксируется уровень излучения на площадь каждого отдельного блока в солнечной панели.

Фиксируется среднее арифметическое, далее фотометрические показатели переводятся в энергетическую систему координат.

Полученный показатель (Ecp) отмечается, после чего исследуется площадь модульного “кирпича”. При её умножении на среднее арифметическое солнечной радиации, падающей на “кирпич”, исследователь получает общий для модуля показатель энергии. К примеру, 20 Вт.

Далее при включённой в электросеть батарее исследуют показатель того, насколько мощный ток она выдаёт. Уровень технологичности батареи пропорционален тому, что получается “на выходе”. К примеру, солнечная батарея с вымышленным КПД 50% даст ток 10 Вт.

Представим для удобства читателей эти данные в виде таблицы:

Мощность светопотока, Вт КПД, %
20 2 10
20 4 20
20 10 50
20 . .
20 50

100 (несуществующий идеал)

Факторы, влияющие на эффективность солнечных батарей

Важно понимать, что этот вопрос необходимо разделить на два блока — качество самих модулей и климатические параметры, в которых используется электростанция. Если использовать простой язык, то эффективность солнечных панелей прямо пропорциональна эффективности работы полупроводников, чьи функции базируются на физических принципах pn-переходов. КПД солнечных батарей, изготовленных из кремния, достаточно невысок. Причина известна — упомянутый материал улавливает исключительно инфракрасный сегмент света. Энергия ультрафиолетового излучения для него остаётся недоступной. Однако отказаться от кремния невозможно из-за его доступной цены. Иные факторы, влияющие на эффективность устройства, не зависят от характеристик материалов и связаны с атмосферными условиями и обслуживанием устройств.

  • Чистота поверхностей панели. Энергия, отдаваемая вашему дому гелиосистемой, зависит от чистоты рабочих поверхностей панелей. Ввиду этого, как правило, они устанавливаются таким образом, чтобы дождевые потоки, снег и грязь естественным образом смывались с конструкции.
  • Тень. Если выбрано решение, подразумевающее несколько панелей, тень от любого из них не должна падать на соседнюю батарею. Иначе коэффициент полезного действия будет стремительно падать. То же самое касается и тени от ближайшей инфраструктуры — столбов, вышек, деревьев, соседских построек и так далее. Возводить солнечные батареи в этом случае категорически не рекомендуется.
  • Погода. Использование гелиосистемы зимой по причине короткого дня и длинной ночи, а также неинтенсивных солнечных лучей в случае пасмурной погоды, менее эффективно. Летом КПД оборудования достигнет 14-15% (жара “съест” 2-3%), зимой — 18-19%. При этом осадки незначительно воздействуют на работу устройств: КПД панелей при наличии облаков снижается на максимум 25% (роль играет плотность облаков). Большинство батарей работает в диапазоне от -40 до +80 градусов по Цельсию. Правило таково: чем ниже температура, тем выше производительность. 25 градусов по Цельсию — наилучшая среда для работы оборудования.
  • Вектор доставки света. Панели необходимо располагать так, чтобы они “впитывали” максимум радиации Солнца. Разумеется, юг — лучшая сторона для инсталляции электростанции. Зимой необходимо немного батареи приподнять, летом — опустить.
  • Ночь. На данном этапе это неустранимый фактор. В отсутствие света конструкции не функционируют, а их собственники берут свет из общей сети или аккумуляторов. Хотя нужно упомянуть особый вид всепогодных панелей, созданных китайскими учёными в 2017 году; они работают круглосуточно и, соответственно, существенно повышают окупаемость устройства.

Если говорить об Украине, то чем южнее установлены электростанции, тем они эффективнее. Кроме того, восток страны более освещён, нежели её запад. В итоге, лучшее место для установки батарей — это Крым и южная часть Одесской области. Во всех остальных регионах наиболее продуктивны шесть месяцев — с мая по август. И пару слов о панелях, бывших в употреблении. Не рекомендуется их приобретать, поскольку их мощность будет ниже заявленной. Новые панели более эффективны и экономически целесообразны.

Способы увеличения КПД

Разумеется, первый шаг в этом направлении — это корректировка подвластных пользователю факторов, влияющих на эффективность электростанцией — тени, грязи и так далее. Кроме того, у силиконовых фотоэлементов — основы для самых распространённых панелей — есть определённый срок службы. Ещё говорят, что они “деградируют” и теряют производительность. Уже сейчас мировые учёные работают над так называемым “базовым КПД” — уровнем неизменной эффективности. Этот показатель постоянно растёт. Крыша вашего дома, где вы запланировали разместить батареи, может для этого не подходить. Тогда придётся установить их на специальную опору, которая даже позволяет элементам крутиться вслед за солнцем (благодаря поворотному трекеру). Панели меняют не только угол, но и направление. По оценкам, установка одного поворотного трекера даёт сразу плюс 40-50% эффективности. Впрочем, он весьма дорог. На рынке существуют новые высокоэффективные (43,5%) пятислойные панели фирмы Sharp, четырёхслойные фирмы Soy-Tech (44,7%) и устройство в Институте интегральных схем Фраунхофера (Германия). В последнем учреждении эффективность батареи достигает фантастических 47% — это мировой рекорд.

Если вы решили приобрести солнечную электростанцию, специалисты SUNSAY Energy готовы проконсультировать в удобное для вас время и посоветовать панель, идеально отвечающую вашим потребностям.

Источник

КПД солнечных батарей – от чего зависит, работа в пасмурную погоду

Если вы хотите самостоятельно себя обслуживать электричеством, тогда идеальным вариантом является установка солнечной системы. При помощи размещения солнечных батарей вы сможете перерабатывать солнечный свет на электричество и тем самым покрывать все свои нужды, не прибегая к услугам общей сети. Но здесь одной или двух батарей будет недостаточно. Придется обзавестись целым комплектом. Чтобы в полном объеме покрывать электрорасходы своего дома, необходимо перед покупкой солнечных батарей ознакомиться с основными техническими характеристиками, а в особенности с показателем чистой выработки (КПД).

Показатель КПД солнечных панелей

КПД – это коэффициент полезного действия, который измеряется в процентах. Для солнечных батарей – это показатель, который определяет, сколько электричества на выходе мы получим при попадании на поверхность панелей солнечного света. Другими слова – это экономическая целесообразность работы солнечной батареи. В данный показатель уже включены все затраты, которые направляются на переработку солнечного света в электричество с учетом работы и других дополнительных технических устройств.

Важно понимать, что эта цифра на выходе не всегда будет в рамках заявленной производителем. Процент эффективности работы панели указывается с учетом соблюдения всех правил, то есть угла наклона солнечных лучей и уровня радиации. В случае облачной погоды или изменения траектории солнечных лучей в зависимости от времени года показатель КПД будет снижаться. Поэтому, чтобы не терять электричество, приходится покупать больше солнечных батарей, чтобы исключить риски нехватки энергии на покрытие всех потребностей.

От чего зависит КПД

На высокий процент эффективной выработки электроэнергии батареями влияет множество факторов. Основными из них являются:

  • Угол падения солнечного света на поверхность панелей.
  • Температурный коэффициент.
  • Погодные условия.
  • Наличие тени, грязи, снега.
  • Затемнение элементов.

Максимальная эффективность солнечных панелей достигается при попадании солнечного света на поверхность модулей под углом 90 градусов, то есть перпендикулярно. При этом, даже если батарея располагается с учетом всех требований угла наклона, поверхность фотоэлементов должна быть чистой и не заслоняться деревьями или другими постройками.

При установке солнечных модулей следуйте рекомендациям специалистов. Во-первых, выбирайте южную сторону для размещения конструкций, чтобы избежать попадания тени на них, а во-вторых, соблюдайте угол наклона согласно времени года и региона проживания. Ведь чем больше солнечного света попадает на поверхность, тем выше КПД, а соответственно, и выработка электроэнергии. Учитывайте, что в зимнее время показатель эффективности может подать в половину, а то и больше. И не забывайте очищать модули от снега и грязи, так как это становится препятствием для попадания света.

Еще одним важным препятствием, снижающим общую эффективность выработки батареями электрического тока, выступает температурный коэффициент. В результате попадания солнечных лучей на поверхность модулей они нагреваются, температура может доходить до 80 градусов. Критические температурные значения напрямую отражаются на уровне КПД. Показатель снижается. Необходимо проводить мероприятия, направленные на уменьшение потери эффективности. Например, это можно сделать за счет свободного пространства между батареями, из-за чего воздушные массы смогут охлаждать модули, а также путем периодического протирания их.

Как увеличить КПД панелей

Можно ли повысить эффективность солнечных батарей? Чтобы получить максимальный эффект от установки солнечной системы необходимо соблюдать все правила эксплуатации панелей: контролировать угол наклона, правильно разместить с возможностью проветривания, очищать поверхность фотоэлементов и исключать затемненные участки. Кроме того, отдавайте предпочтение тем батареям, которые изготовлены из высококлассного кремния. Именно они смогут обеспечить наивысший КПД.

Повысить КПД солнечной панели

Сегодня этим вопросом занимаются научно-исследовательские центры, и данное направление является приоритетным. Инженерами предпринимаются попытки производить такую солнечную систему, которая будет состоять из модулей разных материалов. Смысл такой задумки заключается в том, чтобы разные материалы и несколько слоев могли впитывать в себя все типы энергии: как инфракрасное излучение, так и ультрафиолетовое. Подобное решение сможет повысить КПД в два, а то и в три раза. Ученые предполагают, что такие современные модули смогут производить до 90% эффективности. Более высокий процент производительности позволяет не только вырабатывать больше энергии, но и сократить срок окупаемости.

Максимальные показатели КПД

Стандартной для хороших дорогих монокристаллических панелей является выработка энергии на уровне 20-25%. Если взять во внимание отдельные высококачественные панели, то максимальное значение зафиксировано на уровне 30% для домашних условий и 25% для промышленных объектов. Также на рынке есть модели с показателями КПД до 47%. На сегодняшний день это самые высокие значения. Они производятся торговой маркой «Шарп» и состоят из трех слоев на основе специальных линз Френеля, благодаря чему больше фокусируют света на своей поверхности. Между слоями находится диэлектрическая прослойка, которая служит туннелем. Здесь также в преобразовании энергии участвуют световые частицы, за счет чего мощность батареи используется на полную.

Среди доступных вариантов с максимальной эффективностью лидером является солнечная батарея от мировой компании «Солар Сити». Уже несколько лет она выпускает панели с КПД более 22%. Однако сразу стоит отметить высокую стоимость таких конструкций, и позволить себе целую солнечную станцию минимум из 10 панелей сможет не каждый. Но лабораторные опыты не заканчиваются, поэтому в скором времени и в данной сфере будут свои особые технологии, которые позволят быстрее окупить затраты и получить максимум от солнца. Так же добиться максимального КПД позволяет установка правильных креплений для солнечных панелей, которые обеспечат нужный угол наклона.

Источник

2.3.2 Расчёт кпд солнечной батареи и коэффициента заполнения при различной плотности излучения

Для расчёта КПД солнечной батареи сравним мощность излучения, падающего на батарею от источника света и мощность, выдаваемую при этом солнечной батареей. Для этого определим площадь солнечной батареи по формуле 2.3:

где S, [м 2 ] – площадь солнечной батареи, a, [м], b[м] – геометрические размеры батареи солнечных элементов.

Мощность падающего излучения на солнечную батарею определим по формуле 2.4:

Wi = S* Et(среднее)

где Wi, [Вт] – мощность падающего излучения на солнечную батарею, S, [м 2 ] – площадь солнечной батареи, Et(среднее) — определим из формулы 2.2.

Wi (234) = 23.7276 Вт , Wi (170) = 17.238 Вт, Wi (120) = 12.168 Вт

По таблицам: 2.1, 2.2.А, 2.2.Б. и по графикам кривых мощности рис. 2.14, рис. 2.16, рис. 2.18, определим максимальную мощность выдаваемую батареей солнечных элементов при различной плотности падающего излучения: Wmax(234) = 1.9076 Вт

Определим КПД солнечной батареи по формуле 2.5:

где η – КПД, Wi, [Вт] — определяем по формуле 2.4, Wmax, [Вт] – максимальная мощность, выдаваемая солнечной батареей при данной мощности падающего излучения.

η(234) = 0.0804 = 8.04%

η(170) = 0.0783 = 7.83%

η(120) = 0.0796 = 7.96%

Из значений КПД для различных уровней освещённости солнечной батареи при постоянном спектральном составе излучения можно сделать вывод, что с изменением освещённости КПД остаётся примерно постоянным, а небольшие отклонения объясняются погрешностью измерений.

Определим коэффициент заполнения как отношение максимальной мощности, выдаваемой солнечной батареей к произведению напряжения холостого хода и тока короткого замыкания. Коэффициент заполнения определим по формуле 2.6:

где Kz – коэффициент заполнения, Wmax, [Вт] – максимальная мощность, выдаваемая солнечной батареей при данной плотности падающего излучения, Uxx,[В] – напряжение холостого хода батареи, при отсутствии внешнего потребителя, Iкз, [А] – ток короткого замыкания.

Значения Wmax, Uxx, Iкз берём из таблиц 2.1, 2.2.А, 2.2.Б. для различных уровней освещённости.

Источник

Оцените статью