Аккумуляторы. Примеры расчетов
Аккумуляторы представляют собой электрохимические источники тока, которые после разрядки могут быть заряжены с помощью электрического тока, получаемого от зарядного устройства. При протекании зарядного тока в аккумуляторе происходит электролиз, в результате которого на аноде и катоде образуются химические соединения, которые были на электродах в исходном рабочем состоянии аккумулятора.
Электрическая энергия при заряде в аккумуляторе превращается в химическую форму энергии. При разряде химическая форма энергии превращается в электрическую. Для заряда аккумулятора нужно больше энергии, чем может быть получено при его разряде.
Напряжение каждого элемента свинцового аккумулятора после заряда 2,7 В не должно падать ниже 1,83 В при разряде.
Средняя величина напряжения железо-никелевого аккумулятора 1,1 В.
Зарядный и разрядный ток аккумулятора ограничен и задается заводом-изготовителем (примерно 1 А на 1 дм2 пластины).
Количество электричества, которое можно получить от заряженного аккумулятора, называется емкостью аккумулятора, изменяемой в ампер-часах.
Аккумуляторы характеризуются также отдачей по энергии и току. Отдача по энергии равна отношению энергии, полученной при разряде, к энергии, затраченной на заряд аккумулятора: ηэн=Aраз/Aзар.
Для свинцового аккумулятора ηэн=70%, а для железо-никелевого ηэн=50%.
Отдача по току равна отношению количества электричества, полученного при разряде, к количеству электричества, израсходованного при заряде: ηт=Qраз/Qзар.
Свинцовые аккумуляторы имеют ηт=90%, а железоникелевые ηт=70%.
1. Почему отдача по току аккумулятора больше, чем отдача по энергии?
ηэн=Aраз/Aзар =(Uр∙Iр∙tр)/(Uз∙Iз∙tз )=Uр/Uз ∙ηт.
Отдача по энергии равна отдаче по току ηт, умноженной на отношение напряжения разряда к напряжению заряда. Так как отношение Uр/Uз
2. Свинцовый аккумулятор напряжением 4 В и емкостью 14 А•ч показан на рис. 1. Соединение пластин показано на рис. 2. Соединение пластин параллельно увеличивает емкость аккумулятора. Две группы пластин соединены между собой последовательно для увеличения напряжения.
Рис. 1. Свинцовый аккумулятор
Рис. 2. Соединение пластин свинцового аккумулятора на напряжение 4 В
Аккумулятор заряжался 10 ч током Iз=1,5 А, а разряжался 20 ч током Iр=0,7 А. Какова отдача по току?
Qр=Iр∙tр=0,7∙20=14 А•ч; Qз=Iз∙tз=1,5∙10=15 А•ч; ηт=Qр/Qз =14/15=0,933=93%.
3. Аккумулятор заряжается током 0,7 А в течение 5 ч. Как долго он будет разряжаться током 0,3 А при отдаче по току ηт=0,9 (рис. 3)?
Рис. 3. Рисунок и схема к примеру 3
Израсходованное на заряд аккумулятора количество электричества равно: Qз=Iз∙tз=0,7∙5=3,5 А•ч.
Количество электричества Qр, отдаваемое при разряде подсчитаем по формуле ηт=Qр/Qз , откуда Qр=ηт∙Qз=0,9∙3,5=3,15 А•ч.
Время разряда tр=Qр/Iр =3,15/0,3=10,5 ч.
4. Аккумулятор емкостью 20 А•ч был полностью заряжен в течение 10 ч от сети переменного тока через селеновый выпрямитель (рис. 4). Положительный вывод выпрямителя при заряде подключается к положительному выводу аккумулятора. Каким током аккумулятор заряжался, если отдача по току ηт=90%? Каким током аккумулятор может разряжаться в течение 20 ч?
Рис. 4. Рисунок и схема к примеру 4
Ток заряда аккумулятора равен: Iз=Q/(ηт∙tз )=20/(10∙0,9)=2,22 А. Допустимый ток разряда Iр=Q/tр =20/20=1 А.
5. Аккумуляторная батарея, состоящая из 50 элементов, заряжается током 5 А. Э. д. с. одного элемента батареи 2,1 В, а его внутреннее сопротивление rвн=0,005 Ом. Какое напряжение имеет батарея? Какую э. д. с. должен иметь зарядный генератор с внутренним сопротивлением rг=0,1 Ом (рис. 5)?
Рис. 5. Рисунок и схема к примеру 5
Э. д. с. батареи равна: Eб=50∙2,1=105 В.
Внутреннее сопротивление батареи rб=50∙0,005=0,25 Ом. Э. д. с. генератора равна сумме э. д. с. батареи и падений напряжения в батарее и генераторе: E=U+I∙rб+I∙rг=105+5∙0,25+5∙0,1=106,65 В.
6. Аккумуляторная батарея состоит из 40 элементов с внутренним сопротивлением rвн=0,005 Ом и э. д. с. 2,1 В. Батарею заряжают током I=5 А от генератора, э. д. с. которого 120 В, а внутреннее сопротивление rг=0,12 Ом. Определить дополнительное сопротивление rд, мощность генератора, полезную мощность заряда, потери мощности в добавочном сопротивлении rд и потери мощности в батарее (рис. 6).
Рис. 6. Расчет акукумулятора
Дополнительное сопротивление найдем с помощью второго закона Кирхгофа:
Eг=Eб+rд∙I+rг∙I+40∙rв∙I; rд=(Eг-Eб-I∙(rг+40∙rв))/I=(120-84-5∙(0,12+0,2))/5=34,4/5=6,88 Ом.
Так как э. д. с. батареи при заряде увеличивается (э. д. с. элемента в начале заряда равна 1,83 В), то в начале заряда при неизменном добавочном сопротивлении ток будет больше 5 А. Для поддержания неизменным тока заряда необходимо изменять дополнительное сопротивление.
Потери мощности в дополнительном сопротивлении ∆Pд=rд∙I^2=6,88∙5^2=6,88∙25=172 Вт.
Потери мощности в генераторе ∆Pг=rг∙I^2=0,12∙25=3 Вт.
Потери мощности во внутреннем сопротивлении аккумуляторной батареи ∆Pб=40∙rвн∙I^2=40∙0,005∙25=5 Вт.
Мощность генератора, отдаваемая во внешнюю цепь, Pг=Eб∙I+Pд+Pб=84∙5+172+5=579 Вт.
Полезная мощность заряда Pз=Eб∙I=420 Вт.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Источник
Как рассчитать кпд аккумулятора
- ЖАНРЫ 360
- АВТОРЫ 273 501
- КНИГИ 642 294
- СЕРИИ 24 474
- ПОЛЬЗОВАТЕЛИ 603 688
Аккумуляторная батарея — одно из самых сложных устройств современного автомобиля. В ней непрерывно протекают многие электрохимические и физические процессы, взаимосвязанные и в значительной мере обусловленные влиянием внешних факторов. И как любое сложное устройство, требует соответствующего ухода при соответствующей квалификации.
Автолюбителя, в большинстве своем, интересуют чисто практические вопросы. Такие, как например, почему батарея уже через два сезона не обеспечивает пуск совершенно исправного двигателя? Почему батарея прослужила всего два года, а не 5 или 8 лет, хотя и прошел автомобиль по 3 тысячи км в год из-за отсутствия бензина? Что надо делать для того, чтобы аккумуляторная батарея служила долго и не подводила в самый неподходящий момент? И сколько ей уделять времени, и не следует ли с ней возиться каждый день? И многие другие подобные вопросы.
Для ответов на эти вопросы необходимо пользоваться не только готовыми рекомендациями и инструкциями, но и иметь определенный уровень знаний об аккумуляторных батареях.
Аккумуляторы, как и иные химические источники тока, интенсивно изучаются и совершенствуются, однако зачастую многие публикации недоступны для автолюбителя и понимание ряда вопросов требует специальной профессиональной подготовки. Во многих журнальных статьях, пособиях, рекомендациях, инструкциях и т.п. наряду с безусловно правильной и полезной информацией много субъективизма, а в ряде случаев, к сожалению, просматривается непонимание, незнание и корпоративные интересы авторов (особенно в журнале «За рулем»).
Настоящее пособие преследует очень простую цель — дать автолюбителю начальные знания по уходу за аккумуляторной батареей. Мы старались избежать сложных теоретических выкладок м формул. Тем не менее, полностью исключить теоретические сведения нельзя.
Без понимания основных процессов, протекающих в аккумуляторе в тех или иных условиях, невозможно построить оптимальную тактику ухода за аккумуляторной батареей в реальных условиях эксплуатации
(собственно аккумулятора), избежать досадных ошибок, даже пользуясь огромным количеством правильных рекомендаций.
Мы понимаем, что данное пособие тоже не лишено недостатков, однако постарались в логической последовательности изложить известные факты, различные методики и выполняемые работы по уходу за
аккумулятором. Надеемся, что материал, изложенный в пособии, поможет автолюбителю в уходе за аккумуляторной батареей.
2. ОСНОВНЫЕ ПРОЦЕССЫ В АККУМУЛЯТОРЕ
Аккумулятор является обратимым источником тока. Он способен отдавать в нагрузку во внешней цепи ранее запасенную энергию. На легковые автомобили устанавливаются аккумуляторные батареи, состоящие из шести последовательно включенных аккумуляторов. Они способны обеспечивать большие разрядные токи и относятся к классу стартерных аккумуляторных батарей. Это отражено в маркировке батарей. Например, батарея 6СТ-55 содержит 6 аккумуляторов, стартерная, номинальная энергоемкость составляет 55 ампер-часов.
Приведем некоторые основные понятия и определения, характеризующие аккумуляторную батарею в различных режимах работы.
Электродвижущая сила (ЭДС) — это разность электродных потенциалов при разомкнутой электрической цепи. ЭДС аккумулятора зависит от плотности температуры электролита и состава активной массы пластин. Выражается ЭДС в вольтах и обычно обозначается буквой Е. Измерить ЭДС можно вольтметром с большим внутренним сопротивлением, превышающим 20 кОм.
ЭДС покоя (Е0) — это ЭДС аккумулятора, находящегося длительное время (более 2-3 часов) без нагрузки.
ЭДС аккумулятора под нагрузкой отличается от ЭДС покоя. Это вызвано том, что при прохождении тока в цепи на электродах и в электролите происходят необратимые физические и химические процессы, связанные с потерей энергии. Один из них — это процесс поляризации.
ЭДС поляризации (Еп) — это ЭДС аккумулятора при наличии поляризации пластин.
Еп всегда направлена навстречу току.
При заряде ЭДС аккумулятора равна сумме ЭДС покоя и ЭДС поляризации:
Величину Е называют динамической ЭДС, или просто ЭДС аккумулятора.
В замкнутой электрической цепи постоянного тока, когда к аккумулятору подключены потребители, связи между ЭДС, проходящим по цепи током и сопротивлением цепи определяется по закону Ома:
I — сила тока в цепи, А;
R — активное сопротивление внешней цепи, Ом;
r — полное сопротивление участка электрической цепи внутри самого источника тока, Ом.
Выражение (1) можем переписать в виде:
т.е. ЭДС аккумулятора компенсирует падение напряжения на внешней цепи U=IR и падение напряжения внутри самого источника тока на его полном внутреннем сопротивлении Ur=I*r.
Величина U=I*R — это напряжение аккумулятора. Это напряжение на зажимах аккумулятора, которое используется для работы потребителей тока.
Из уравнения (2) видно, что при работе аккумулятора его напряжение U всегда меньше чем ЭДС, так как
По мере износа аккумулятора его внутреннее сопротивление возрастает. Это одна из причин пониженного напряжения на зажимах аккумулятора под нагрузкой. поскольку увеличивается Ur. У разряженного аккумулятора ситуация подобная.
Различают зарядное напряжение, равное
и разрядное напряжение:
где Iз — зарядный ток, А;
r — внутреннее сопротивление аккумулятора, Ом.
Нормальный зарядный ток — величина зарядного тока (А).
численно равная 0.1 емкости аккумуляторной батареи, выраженная в ампер-часах.
Внутреннее сопротивление аккумулятора складывается из сопротивления электродов, электролита и сопротивления, обусловленного сепараторами (прокладками между пластинами). Внутреннее сопротивление — величина непостоянная. Оно зависит от конструкции электродов, состояния активной массы, плотности электролита, температуры. В полностью заряженном аккумуляторе внутреннее сопротивление значительно меньше, чем у разряженного. Объясняется это тем, что электропроводность активной массы заряженного аккумулятора выше, чем у разряженного.
Емкость аккумулятора — это количество электричества, которое может запасти или отдать аккумулятор.
Емкость зависит от величины тока разряда. Емкость аккумулятора определяется как величина, равная произведению постоянного тока на время при 20-часовом режиме разряда до напряжения 1.7 В:
где Iр — величина разрядного тока,
tр — время разряда.
Емкость по току разрядная Qр — номинальная емкость аккумулятора при разряде:
где Ip — величина разрядного тока, А;
Зарядная емкость аккумулятора — характеризует количество электричества, полученное аккумулятором в процессе заряда:
где Qз — зарядная емкость, А*ч;
У современных аккумуляторов КПД по емкости равно 0.85.
Емкость по энергии — характеризует способность аккумулятора выполнить электрическую работу за определенное время.
Источник
Какой КПД у аккумулятора?
Тут недавно в комментах на ютьюбе прицепился ко мне немного странный товарищ, который пытался меня уверить, что ни в коем случае нельзя использовать «связку» солнечной батареи и буферного аккумулятора 🙂 Поскольку, по его версии, в аккумуляторе теряется 30-40% энергии — прямо вот ужас-ужас! Я-то, с младых ногтей, помню про совсем иную цифру для литиевых аккумуляторов: примерно 3-5% потерь, т.е. на порядок меньше 🙂
Но все же, малость «завел» он меня — так что я поставил небольшой эксперимент. Задача простая: нужно померить КПД аккумулятора, или иными словами, посчитать разницу между энергией, израсходованной на зарядку аккумулятора и той энергией, которую мы можем потом из этого аккумулятора получить обратно.
Проще всего подобный замер было сделать с помощью универсального зарядника iMax, поскольку он умеет как заряжать, так и разряжать аккумуляторы, и при этом еще показывает, сколько в аккумулятор ушло, и сколько мы от него получили.
В общем, я взял аккумулятор, разрядил его (iMax разряжает до напряжения 3В, что меня для целей данного эксперимента вполне устраивает), потом полностью зарядил и снова разрядил. Результаты представлены на фото.
В сухом остатке имеем: отдано в аккумулятор 2565мАч, получено из него 2480мАч. Соответственно, КПД аккумулятора составил примерно 97%. Ну а потери энергии на заряде/разряде — около 3%, т.е. для практических целей пренебрежимо малая величина. В общем, все в полном соответствии с теорией 🙂
Естественно, нужно делать какую-то скидку на точность измерения, на конкретный аккумулятор, внешние факторы (например, температуру аккумулятора или качество соединительных контактов, а также временной интервал между зарядом и разрядом), но в общем-то, это все уже «ловля блох», особого смысла не имеющая. Доказано главное: потери в литиевом аккумуляторе находятся где-то в районе 5%, а уж никак не 40%, как утверждал данный товарищ! 🙂
ЗЫ: На всякий случай уточняю: здесь речь идет о потерях только в самом аккумуляторе, без учета потерь в электронике (например, контроллер заряда)! Суммарные потери, естественно, всегда будут больше.
Источник