Как определить мощность вэу

Расчет выработки энергии ветрогенераторной станцией

Ветрогенератор в автономной системе очень нужен. По большей части тем, что его выработка не имеет ярко выраженной зависимости от сезонов. Солнечные батареи, в наших широтах, хорошо работают летом и плохо зимой, тогда как ветрогенераторы сохраняют свою эффективность в зимний период. Немало важно то, что сильные ветра, как правило, наблюдаются в пасмурную погоду, поэтому совместное применение ветрогенераторов и солнечных панелей достаточно обоснованно. В этой статье мы рассматриваем малые ветроэнергетические установки (ВЭУ) т.е. установки мощностью от 40 Вт до 20 кВт.

Ветрогенераторы достаточно эффективны в прибрежных районах, либо на возвышенностях, где скорости ветра выше и ветра чаще. На большей части территории России средняя скорость ветра составляет 4-5 метров в секунду, что создает неблагоприятные условия для применения ветрогенераторов (и это на высоте 10 м от поверхности земли, стандартная высота расположения анемометра на метеостанциях). Но данные усреднены, поэтому следует изучить энергопотенциал конкретной местности, если существует подозрение, что ветрогенератор может быть эффективен.

Основная проблема ветровых станций заключается в том, что их эффективность мала при низких скоростях ветра. Если внимательно посмотреть на кривую зависимости мощности от скорости ветра, то можно обнаружить следующее: стартовая скорость большинства современных ВЭУ располагаться в пределах 3 — 4 м/с. Но необходимо, чтоб ветровой поток продержался на этом уровне не наименее 10 мин, лишь тогда автоматика даст позволение на запуск ВЭУ. При этом более-менее ощутимая, выработка энергии начнется только при 7 метрах в секунду, а ВЭУ, трудящаяся при средней скорости 6 м/с, генерирует емкость на 44 % большую, чем при скорости 5 м/с…

Читайте также:  Установка дизельного электрогенератора требования

Многие хотят уменьшить начальную скорость ветра при котором начинается вращаться турбина до 1-2 м/с — мол слабый ветер бывает всегда и пусть в аккумуляторы всегда что-то «капает». Однако, при такой скорости ветер имеет ОЧЕНЬ мало энергии. Если ветрогенератор и вся система рассчитаны на 3-5кВт, то 5-10 Вт не решат никаких проблем.

Перейдем теперь к методам расчета систем с ветряными электростанциями. Покупая устройство, вы будете знать его заявленную номинальную мощность, а также найдете в инструкции график зависимости мощности вырабатываемой «ветряком» от скорости ветра.

Из формулы P=( η*КИЭВ* ρ*V 3 *π*D 2 )/8 видно, что мощность ветрового потока пропорциональна кубу скорости ветра и квадрату диаметра колеса турбины. Это означает, что при увеличении скорости ветра вдвое, мощность потока возрастет в 8 раз, а при увеличении длины лопастей вдвое, мощность ветрогенератора возрастет в 4 раза.

В таблице приведены величины мощности ветровой турбины, в зависимости от скорости ветра и диаметра колеса турбины. Коэффициент эффективности турбины k = 0,25.

V м/с 3 4 5 6 7 8 9 10 11
P Вт d = 1м 3 8 15 27 42 63 90 122 143
P Вт d = 2м 13 31 61 107 168 250 357 490 650
P Вт d = 3м 30 71 137 236 376 564 804 1102 1467
P Вт d = 4м 53 128 245 423 672 1000 1423 1960 2600
P Вт d = 5м 83 196 383 662 1050 1570 2233 3063 4076
P Вт d = 6м 120 283 551 953 1513 2258 3215 4410 5866
P Вт d = 7м 162 384 750 1300 2060 3070 4310 6000 8000
P Вт d = 8м 212 502 980 1693 2689 4014 5715 7840 10435
P Вт d = 9м 268 635 1240 2140 3403 5080 7230 9923 13207
P Вт d = 10м 331 784 1531 2646 4200 6270 8930 12250 16300
Читайте также:  Электрогенераторы ветровые для дома

Вы видите, как сильно возрастает величина мощности ветрового потока при увеличении скорости ветра только на 1 м/с.

Прежде чем звонить в компанию занимающуюся продажей ветрогенераторных установок надо узнать две цифры:

1) Потребление электроэнергии в месяц в киловатт-часах — все платят за электричество в квартирах или домах ежемесячно и эта цифра поможет оценить Ваши потребности.

Можно эту цифру посчитать примерно и самому, например:

1. Лампочка (сразу лучше меняйте на энергосберегающие или LED) — 20Вт — эквивалент 100Вт обычной (1кВт — это 1000Вт, то есть 20Вт — это 0,02кВт) горит 5 часов в день, поэтому мощность в кВт умножаем на часы работы в месяц — 0,02 * 5 * 30(дней в месяце) = 3кВт*часа в месяц.

2. Холодильник 300Вт, работает примерно 30% времени, то есть 8 часов в сутки — 0,3 * 8 * 30 = 72кВт*часа в месяц.

3. Электрочайник 1,5 кВт, работает 0,5 часа в день — 1,5 * 0,5 *30 = 22,5кВт*часа в месяц

И так далее по всем приборам.

Потом всё суммируете — 3 + 72 + 22,5 = 97,5кВт*час в месяц.

Это и есть месячное потребление — примерно 100кВт*час в месяц в данном примере.

2) Среднегодовая скорость ветра в предполагаемом месте установки — её можно приблизительно узнать в ближайшей метеостанции.

Для выбора инвертора надо знать максимальную (пиковую) мощность потребления электроприборов с небольшим запасом — по ней выбирается его мощность. При наличии этих показателей можно быстро и грамотно подобрать необходимое оборудование, обратившись к продающей его организации.

При выборе оборудования не стоит опираться на мощность ветрогенератора — она сильно зависит от скорости ветра. Это только в бензогенераторе она соответствует указанной в паспорте. 5кВт ветрогенератор при слабом ветре (3-4м/с) выдаёт всего 0,1-0,2 кВт.

Очень часто покупатель ориентируется на максимальную (пиковую) мощность своего потребления и просит постоянно эту мощность — например 5кВт, как в бензогенераторе, например — начинаем разбираться, считать — и оказывается, что для лампочек, холодильника, телевизора и насоса вполне хватает 0,5кВт постоянной мощности — а это две большие разницы. Оценивать своё электропотребление нужно только по киловатт — часам в месяц.

Но и не стоит определять среднюю выдаваемую ветрогенератором мощность по среднегодовой скорости ветра — это будет намного заниженная цифра.

Существует атлас ветров России, в котором есть данные по ветру в 332 метеостанциях. «Роза ветров» так часто употребляемая обывателем в данной теме к ней относится «поскольку-постольку» — это статистика по направлениям ветра, а ветрогенератору всё равно — как часто с какой стороны дует. А вот при определении места установки ветрогенератора «Розу ветров» лучше учитывать, чтобы на направлении основных ветров не оказались высокие строения, деревья и прочие препятствия.

Выбор мачты

Какую мачту выбрать — с растяжками или без?

Если место позволяет, то лучше ставить мачту с растяжками — она будет стоить в 3-5 раз дешевле мачты без растяжек. В настоящее время накоплен уже довольно богатый опыт установки мачт для ветрогенераторов на территории РФ и он позволяет утверждать об этом однозначно.

Иногда предлагают телескопические мачты — они удобны при частых подъёмах и опусканиях, в чём нет особой необходимости при использовании с ветрогенератором. Мощный ветряк на неё не поставишь — не более 1-2кВт, зато стоить она будет намного дороже.

Какой высоты должна быть мачта?

При выборе высоты мачты учитывается рельеф, растительность (близость леса и отдельно стоящие деревья) и застроенность местности. Обычно это от 10 до 20 метров.

  • Если местность открытая — практически на поле, например, то вполне хватит мачты высотой и 10м.
  • Если местность застроена одноэтажными домиками и имеет небольшие деревья — больше подойдёт 15м мачта.
  • Если же рядом двухэтажные дома и высокие деревья или лес — то лучше ставить мачту высотой 20м.

Для ветрогенераторов 1-4кВт мы предлагаем 8 и 12м мачты, поскольку более высокие стоят достаточно дорого для данного класса оборудования.

Конечно, чем выше мачта, тем лучше (чем больше высота — тем сильнее ветер, прямая зависимость), но не всегда более высокая мачта технически или экономически оправдывает себя. Посоветуйтесь со специалистом — обычно простого описания по телефону будет достаточно для определения оптимальной высоты мачты. При выборе высоты мачты учитывается рельеф, растительность (близость леса и отдельно стоящие деревья) и застроенность местности. Обычно это от 10 до 20 метров.

  • Если местность открытая — практически на поле, например, то вполне хватит мачты высотой и 10м.
  • Если местность застроена одноэтажными домиками и имеет небольшие деревья — больше подойдёт 15м мачта.
  • Если же рядом двухэтажные дома и высокие деревья или лес — то лучше ставить мачту высотой 20м.

Высота мачты практически не зависит от мощности ветрогенератора (от 1 до 10кВт). Для ветрогенераторов 1-4кВт мы предлагаем 8 и 12м мачты, поскольку более высокие стоят достаточно дорого для данного класса оборудования.

Все вышесказанное относится к мачтам для ветровых генераторов с горизонтальной осью вращения. Для ветровых генераторов с вертикальной осью вращения при выборе мачты существуют свои резоны, в данной статье не рассматриваемые.

Источник

Как определить необходимую мощность ветрогенератора

Чтобы правильно подобрать необходимую мощность систем с ВЭУ, необходимо понять основные различия между выработанной энергией, потребляемой и аккумулируемой как резерв.

Но прежде чем говорить об устройстве, принципах установки и функционирования ВЭУ, стоит обратить внимание на три основные величины, которые имеют решающее значение при выборе элементов системы:

1) выходная мощность (Р, кВт) определяется только мощностью преобразователя и не зависит от скорости ветра и освещенности ФМ, емкости АБ;

2) время непрерывной работы (t, час) при отсутствии ветра/солнца определяется только емкостью АБ (А*ч) и зависит от величины и характера нагрузки и режимов работы. Для примера, в 4-х полностью заряженных АБ емкостью 200А*ч запасается 7-8кВт*ч электроэнергии, что при постоянной нагрузке 1кВт обеспечивает непрерывную работу 7-8 часов;

3) выработка электроэнергии (W, кВт*час) определяется реальным ветропотенциалом, высотой мачты, рельефом местности, солнечной освещенностью и расположением ФМ и, обычно, указывается за усредненный промежуток времени, например, месяц, т.к. дневная или, тем более, часовая выработка будет носить выборочный, случайный характер. Т.к. одну и ту же задачу по мощности, выработке с различными вариантами резервирования можно решить различным набором элементов системы, то нужно определиться с понятиями (лучше в количественном выражении):
1) мощность преобразователя (это первое, что определяется заказчиком исходя из его нагрузки);
2) мощность генерирования.
Это величины главные, но по физической сути — мгновенные, т.е. без увязки со временем.
Следующие по порядку определения (выбора):
3) выработка (энергия генерирования);
4) энергия резервирования (временной запас в аккумуляторных батареях с учетом мощности нагрузки)
являются более важными при расчете автономных систем.

Между величинами 1, 2, 3, 4 нет прямой связи, однако есть полученные опытным путем типовые системы или детально выбранный вместе с заказчиком оптимальный вариант для конкретного использования.

Как показывает практика, многие потребители путают понятия «мощность оборудования», которое измеряется в ваттах или киловаттах, и «производство электроэнергии этим оборудованием», которое равняется количеству произведенной энергии в единицу времени – Вт час, кВт час. Реальную стоимость имеют именно киловатт-часы, за которые потребитель платит деньги. Кроме того, опыт эксплуатации ВЭУ показал, что заказчики, как правило, не учитывают график распределения нагрузок на протяжении суток, а просто суммируют мощность потребителей в доме (электрооборудование и бытовая техника). Отсюда делается ошибочный вывод, что мощности системы с ВЭУ в 1,5 кВт недостаточно, хотя после расчетов, а особенно эксплуатации, становится очевидным, что месячное энергопотребление вполне покрывается возможностями стандартной ветроэнергетической установки, предназначенной для электроснабжения индивидуального дома и хозяйства. Например, производимая в Украине система с ВЭУ-08 мощностью 1,5 кВт способна выдавать в условиях Киевской области (далеко не самый благоприятный в отношении ветропотенциала регион Украины) летом до 100 кВт час в месяц, а в зимне-весенний сезон — свыше 200 кВт час, что соответствует энергопотреблению среднестатистической украинской семьей (100-300 кВт час в месяц). В местностях, где наблюдается значительный ветропотенциал (например, в степи или на возвышенности), или при условии применения мачты большей высоты производство электроэнергии возрастает в 1,5-2 раза, причем шумовое влияние уменьшается.

Источник

Пример расчета параметров ветроэнергетической установки для потребителя малой мощности

Дата публикации: 19.12.2016 2016-12-19

Статья просмотрена: 6088 раз

Библиографическое описание:

Аубакиров, Р. Д. Пример расчета параметров ветроэнергетической установки для потребителя малой мощности / Р. Д. Аубакиров, А. О. Вирайло, Е. В. Гаврилович. — Текст : непосредственный // Молодой ученый. — 2016. — № 28.2 (132.2). — С. 1-7. — URL: https://moluch.ru/archive/132/36967/ (дата обращения: 18.06.2021).

Определить пик промышленного потребителя энергии не представляет сложности, т.к. изначально известны мощность и график работы каждой единицы оборудования. Вычисление графика потребления и пика мощности частного потребителя энергии может быть проведено с той или иной вероятностью или прогнозированием в связи с непредсказуемостью графика энергозатрат. В связи с этим задача решается всегда индивидуально с соответствующими допущениями и приближениями.

Методика расчета

1. Расчет пиковой мощности. Определить в соответствии с руководством по эксплуатации мощность каждого прибора Pi (Вт), который может быть использован на исследуемом объекте и занести в таблицу. Определить с соответствующими допущениями простую вероятность включения прибора в различное время суток и отметить это в таблице, проставляя мгновенную потребляемую мощность утром, днем, вечером и ночью. Сложить данные столбцов мгновенной мощности Pi и получить пиковую мощность энергопотребления PП в конкретное время суток – утром, днем, вечером, ночью (Pу, Pд, Pв, Pн). Пример показан в таблице 1.1. Эти данные используются впоследствии для расчета номинальной мощности инвертора PИ.

(1.1)

Из практики известно, что реальная пиковая мощность подавляющего большинства объектов в конкретное время суток меньше суммы всех мощностей находящихся на объекте приборов, поскольку все электроприборы, как правило, не включаются одновременно. Тем не менее, могут быть исключения, которые должны приниматься во внимание разработчиком. При проведении расчетов допускается формальное увеличение пиковой мощности в конкретное время суток с целью создания «запаса» по мощности и прогнозирования увеличения энергопотребления в будущем.

2. Расчет потребляемой энергии. Определить с соответствующими допущениями время работы каждого прибора в конкретное время суток и занести данные в таблицу. Сложить данные столбцов «утро-день-вечер-ночь» для каждого электроприбора и умножить полученное значение на мощность прибора, получив энергопотребление каждого прибора за сутки. Сумма энергопотребления всех приборов Eсут будет являться количеством энергии, потребляемой объектом в сутки:

(1.2)

Эти данные используются впоследствии для расчета номинальной мощности ветроэнергетической установки и аккумуляторных батарей.

Мощность электроприборов и мгновенная потребляемая мощность

Электроприбор

Установленная мощность Pi, Вт

Мгновенная потребляемая мощность Pi, Вт

Источник

Оцените статью