Как определить мощность солнечной панели

Расчёт солнечных батарей

Приветствую вас на сайте е-ветерок.ру, сегодня я хочу вам рассказывать о том сколько нужно солнечных батарей для дома или дачи, частного дома и пр. В этой статье не будет формул и сложных вычислений, я попробую донести всё простыми словами, понятными для любого человека. Статья обещает быть не маленькой, но я думаю вы не зря потратите своё время, оставляйте комментарии под статьёй.

Самое главное чтобы определится с количеством солнечных батарей надо понимать на что они способны, сколько энергии может дать одна солнечная панель, чтобы определить нужное количество. А также нужно понимать что кроме самих панелей понадобятся аккумуляторы, контроллер заряда, и преобразователь напряжения (инвертор).

Расчёт мощности солнечных батарей

Чтобы рассчитать необходимую мощность солнечных батарей нужно знать сколько энергии вы потребляете. Например если ваше потребление энергии составляет 100кВт*ч в месяц (показания можно посмотреть по счётчику электроэнергии), то соответственно вам нужно чтобы солнечные панели вырабатывали такое количество энергии.

Сами солнечные батареи вырабатывают солнечную энергию только в светлое время суток. И выдают свою паспортную мощность только при наличие чистого неба и падении солнечных лучей под прямым углом. При падении солнца под углами мощность и выработка электроэнергии заметно падает, и чем острее угол падения солнечных лучей тем падение мощности больше. В пасмурную погоду мощность солнечных батарей падает в 15-20 раз, даже при лёгких облачках и дымке мощность солнечных батарей падает в 2-3 раза, и это всё надо учитывать.

Читайте также:  Электрическая цепь с солнечной батареей

При расчёте лучше брать рабочее время, при котором солнечные батареи работают почти на всю мощность, равным 7 часов, это с 9 утра до 4 часов вечера. Панели конечно летом будут работать от рассвета до заката, но утром и вечером выработка будет совсем небольшая, по объёму всего 20-30% от общей дневной выработки, а 70% энергии будет вырабатываться в интервале с 9 до 16 часов.

Таким образом массив панелей мощностью 1кВт (1000ватт) за летний солнечный день выдаст за период с 9-ти до 16-ти часов 7 кВт*ч электроэнергии, и 210кВт*ч в месяц. Плюс ещё 3кВт (30%) за утро и вечер, но пускай это будет запасом так-как возможна переменная облачность. И панели у нас установлены стационарно, и угол падения солнечных лучей изменяется, от этого естественно панели не будут выдавать свою мощность на 100%. Я думаю понятно что если массив панелей будет на 2кВт, то выработка энергии будет 420кВт*ч в месяц. А если будет одна панелька на 100 ватт, то в день она будет давать всего 700 ватт*ч энергии, а в месяц 21кВт.

Неплохо иметь 210кВт*ч в месяц с массива мощностью всего 1кВт, но здесь не всё так просто

Во-первых не бывает такого что все 30 дней в месяце солнечные, поэтому надо посмотреть архив погоды по региону и узнать сколько примерно пасмурных дней по месяцам. В итоге наверно 5-6 дней точно будут пасмурные, когда солнечные панели и половины электроэнергии не будут вырабатывать. Значит можно смело вычеркнуть 4 дня, и получится уже не 210кВт*ч, а 186кВт*ч

Так-же нужно понимать что весной и осенью световой день короче и облачных дней значительно больше, поэтому если вы хотите пользоваться солнечной энергией с марта по октябрь, то нужно увеличить массив солнечных батарей на 30-50% в зависимости от конкретного региона.

Но это ещё не всё, также есть серьёзные потери в аккумуляторах, и в преобразователей (инверторе), которые тоже надо учитывать, об этом далее.

Про зиму я пока говорить не буду так-как это время совсем плачевное по выработке электроэнергии, и тут когда неделями нет солнца, уже никакой массив солнечных батарей не поможет, и нужно будет или питаться от сети в такие периоды, или ставить бензогенератор. Хорошо помогает также установка ветрогенератора, зимой он становится основным источником выработки электроэнергии, но если конечно в вашем регионе ветренные зимы, и ветрогенератор достаточной мощности.

Расчёт ёмкости аккумуляторной батареи для солнечных панелей

Примерно так выглядит солнечная электростанция внутри дома

Ещё один пример установленных аккумуляторов и универсального контроллера для солнечных батарей

Самый минимальный запас ёмкости аккумуляторов, который просто необходим должен быть такой чтобы пережить тёмное время суток. Например если у вас с вечера и до утра потребляется 3кВт*ч энергии, то в аккумуляторах должен быть такой запас энергии.

Если аккумулятор 12 вольт 200 Ач, то энергии в нём поместиться 12*200=2400 ватт (2,4кВт). Но аккумуляторы нельзя разряжать на 100%. Специализированные АКБ можно разряжать максимум до 70%, если больше то они быстро деградируют. Если вы устанавливаете обычные автомобильные АКБ, то их можно разряжать максимум на 50%. По-этому, нужно ставить аккумуляторов в два раза больше чем требуется, иначе их придётся менять каждый год или даже раньше.

Оптимальный запас еъёмкости АКБ это суточный запас энергии в аккумуляторах. Например если у вас суточное потребление 10кВт*ч, то рабочая ёмкость АКБ должна быть именно такой. Тогда вы без проблем сможете переживать 1-2 пасмурных дня, без перебоев. При этом в обычные дни в течение суток аккумуляторы будут разряжаться всего на 20-30%, и это продлит их недолгую жизнь.

Ещё одна немаловажная делать это КПД свинцово-кислотных аккумуляторов, который равен примерно 80%. То-есть аккумулятор при полном заряде берёт на 20% больше энергии чем потом сможет отдать. КПД зависит от тока заряда и разряда, и чем больше токи заряда и разряда тем ниже КПД. Например если у вас аккумулятор на 200Ач, и вы через инвертор подключаете электрический чайник на 2кВт, то напряжение на АКБ резко упадёт, так-как ток разряда АКБ будет около 250Ампер, и КПД отдачи энергии упадёт до 40-50%. Также если заряжать АКБ большим током, то КПД будет резко снижаться.

Также инвертор (преобразователь энергии 12/24/48 в 220в) имеет КПД 70-80%.

Учитывая потери полученной от солнечных батарей энергии в аккумуляторах, и на преобразовании постоянного напряжения в переменное 220в, общие потери составят порядка 40%. Это значит что запас ёмкости аккумуляторов нужно увеличивать на 40%, и так-же увеличивать массив солнечных батарей на 40%, чтобы компенсировать эти потери.

Но и это ещё не все потери. Существует два типа контроллеров заряда аккумуляторов от солнечных батарей, и без них не обойтись. PWM(ШИМ) контроллеры более простые и дешёвые, они не могут трансформировать энергию, и потому солнечные панели не могут отдать а АКБ всю свою мощность, максимум 80% от паспортной мощности. А вот MPPT контроллеры отслеживают точку максимальной мощности и преобразуют энергию снижая напряжение и увеличивая ток зарядки, в итоге увеличивают отдачу солнечных батарей до 99%. Поэтому если вы ставите более дешёвый PWM контроллер, то увеличивайте массив солнечных батарей ещё на 20%.

Расчёт солнечных батарей для частного дома или дачи

Если вы не знаете ваше потребление и только планируете скажем запитать дачу от солнечных батарей, то потребление считается достаточно просто. Например у вас на даче будет работать холодильник, который по паспорту потребляет 370кВт*ч в год, значит в месяц он будет потреблять всего 30.8кВт *ч энергии, а в день 1.02кВт*ч. Также свет, например лампочки у вас энергосберегающие скажем по 12 ватт каждая, их 5 штук и светят они в среднем по 5 часов в сутки. Это значит что в сутки ваш свет будет потреблять 12*5*5=300 ватт*ч энергии, а за месяц «нагорит» 9кВт*ч. Также можно почитать потребление насоса, телевизора и всего другого что у вас есть, сложить всё и получится ваше суточное потребление энергии, а там умножить на месяц и получится некая примерная цифра.

Например у вас получилось в месяц 70кВт*ч энергии, прибавляем 40% энергии, которая будет теряться в АКБ, инверторе и пр. Значит нам нужно чтобы солнечные панели вырабатывали примерно 100кВт*ч. Это значит 100:30:7=0,476кВт. Получается нужен массив батарей мощностью 0,5кВт. Но такого массива батарей будет хватать только летом, даже весной и осенью при пасмурных днях будут перебои с электричеством, поэтому надо увеличивать массив батарей в два раза.

В итоге вышеизложенного в вкратце расчёт количества солнечных батарей выглядит так:

  • принять что солнечные батареи летом работают всего 7 часов с почти максимальной мощностью
  • посчитать своё потребление электроэнергии в сутки
  • Разделить на 7 и получится нужная мощность массива солнечных батарей
  • прибавить 40% на потери в АКБ и инверторе
  • прибавить ещё 20% если у вас будет PWM контроллер, если MPPT то не нужно

    Пример: Потребление частного дом 300кВт*ч в месяц, разделим на 30 дней = 7кВт, разделим 10кВт на 7 часов, получится 1,42кВт. Прибавим к этой цифре 40% потерь на АКБ и в инверторе, 1,42+0,568=1988ватт. В итоге для питания частного дома в летнее время нужен массив в 2кВт. Но чтобы даже весной и осенью получать достаточно энергии лучше увеличить массив на 50%, то-есть ещё плюс 1кВт. А зимой в продолжительные пасмурные периоды использовать или бензогенератор, или установить ветрогенератор мощностью не менее 2кВт. Более конкретно можно рассчитать основываясь на данных архива погоды по региону.

    Стоимость солнечных батарей и аккумуляторов

    Цены на солнечные батареи и оборудование сейчас достаточно разнятся, одна и также продукция может по цене в разы отличаться у разных продавцов, поэтому ищите дешевле, и у проверенных временем продавцов. Цены на солнечные батареи сейчас в среднем 70 рублей за ватт, то-есть массив батарей в 1кВт обойдётся примерно в 70т.руб, но чем больше партия тем больше скидки и дешевле доставка.

    Качественные специализированные аккумуляторы стоят дорого, аккумулятор 12в 200Ач обойдётся в среднем в 15-20т.рублей. Я использую вот такие акб, про них написано в этой статье Аккумуляторы для солнечных батарей Автомобильные в два раза дешевле, но их надо ставить в два раза больше чтобы они прослужили хотябы лет пять. А так-же автомобильные АКБ нельзя ставить в жилых помещениях так-как они не герметичны. Специализированные при разряде не блолее 50% прослужат 6-10 лет, и они герметичные, ничего не выделяют. Можно купить и дешевле если брать крупную партию, обычно продавцы дают приличные скидки.

    Остальное оборудование наверно индивидуально, инверторы бывают разные, и по мощности, и по форме синусоиды, и по цене. Так-же и контроллеры заряда могут быть как дорогие со всеми функциями, в том числе с о связью с ПК и удалённым доступом через интернет.

    Источник

    Способы измерения мощности солнечных батарей

    Что нужно для того, чтобы измерить мощность солнечной батареи и не купить, например, батарею мощностью 70 Ватт с маркировкой 100 Ватт? Всего лишь самый дешёвый тестер (мультиметр) и ясная солнечная погода.

    Способ №1 (самый простой).

    Расположите солнечную батарею так, чтобы на ВСЮ её поверхность падал прямой солнечный свет ПЕРПЕНДИКУЛЯРНО поверхности. Необходимо проводить измерения при ясной погоде в середине дня весной-летом, когда Солнце находится максимально высоко над горизонтом (угол Солнца должен быть более 42 градусов над горизонтом).

    Измерьте вольтметром напряжение холостого хода (Voc), подключив щупы вольтметра к разъемам солнечной панели.

    Измерьте амперметром ток короткого замыкания (Isc), подключив щупы амперметра к разъемам панели.

    Посчитайте мощность по следующей эмпирической формуле: P = Voc * Isc * 0.78, где коэффициент 0,78 — это примерное усреднённое отношение паспортной мощности панели к произведению паспортных Voc и Isc.

    Чтобы определить мощность солнечной батареи, у которой в паспорте указано 100 Вт, мы провели измерения напряжения и тока, которые видны на фото выше: Voc = 22.08 Вольт и Isc = 6.37 Ампера. Подставив эти значения в формулу, можно узнать, что её мощность составляет 22.08 * 6.37 * 0.78 = 109.7 Вт.

    Конечно, это не точный способ измерения и он даёт погрешность около 10%, но если при таком измерении Вы насчитаете только 70-80 Вт, то стоит задуматься, сколько же Вы реально заплатите за каждый Ватт мощности.

    На протяжении многих лет мы неоднократно измеряли ток короткого замыкания солнечных батарей и заметили, что весной-летом при ясном небе в Москве ток обычно лежит в пределах от 95 до 105% от номинала. Самые низкие показания тока (около 70-80% от номинала) наблюдаются зимой и связано это с очень низким углом Солнца над горизонтом и большими потерями солнечной энергии в атмосфере.

    Все фото измерений сделаны в Москве, в августе при температуре около 18 градусов в очень ясную погоду, в связи с чем мощность панели превышает свой номинал.

    Источник

    Как произвести расчет солнечных панелей

    Солнечные батареи целесообразно использовать тогда, когда производимый ими электрический ток перекрывает как минимум 50% потребности дома в электрической энергии. Идеально, если они полностью обеспечивают дом бесплатным электрическим током. Для того, чтобы они могли выполнять любую из этих целей, нужно рассчитать реальную мощность солнечной батареи и на основе этой цифры определить, сколько панелей надо установить на крыше дома, а также какой будет срок их окупаемости.

    Формула расчета реальной мощности панели

    Мощность солнечной панели напрямую зависит от солнечного освещения. Чем больше лучей падает на батарею, тем больше тока она производит. И наоборот.

    Производители указывают номинальную мощность, исходя из того, что на 1 кв. метр светочувствительных элементов падает 1 000 Вт солнечной энергии. На такую цифру стоит ориентироваться только тогда, когда в месте расположения частного дома, наблюдается такая же солнечная активность.

    Реальную мощность солнечной панели можно рассчитать по формуле: E = I x x Ko x Kпот., где

    • Е является реальной мощностью батареи (измеряется в кВт*ч);
    • I представляет собой количество солнечное энергии, которое падает на крышу дома. Его измеряют в кВт*ч/м²;
    • V является номинальной мощностью одной солнечной батареи (измеряется в Вт);
    • U представляет собой величину солнечной радиации, на которую производитель ориентировался при расчете номинальной мощности. Эта величина постоянная и равна 1 000 Вт/м² или 1 кВт/м²;
    • Ко представляет собой поправочный коэффициент количества солнечной энергии, падающей на панель. Он зависит от угла наклона батареи и угла ее отклонения от южного направления;
    • Кпот. является коэффициентом, который характеризует, сколько электрической энергии теряется во всей системе автономного электроснабжения.

    Особенности используемых в формуле показателей

    Величина солнечной энергии, падающей на крышу и стены дома в определенном регионе, может измеряться для разных промежутков времени. Метеорологи рассчитывают годовую, месячную и дневную солнечную радиацию, приходящуюся на 1 кв. м. Если этот показатель годовой, то его единицей измерения является кВт*ч/(м²*год). Вместо слова «год» могут быть слова «месяц» и «день». Например, показатель 5 кВт*ч/(м²*день) означает, что за 1 день на 1 кв. м. падает 5 кВт солнечной энергии.

    В вышеуказанную формулу можно подставлять любой показатель. Если подставляется годовая солнечная энергия, то результатом расчета будет такое количество электроэнергии, сколько панель производит за 1 год. Так же с показателями других промежутков времени. Наиболее целесообразно высчитывать месячную выработку электрической энергии. Интенсивность освещения в каждом месяце различна, и для выработки, например, 10 кВт электричества, надо использовать разное количество панелей, а также подключать соответствующее число аккумуляторов.

    Выражение включает в себя 2 показателя, но его следует рассматривать, как один. Это потому, что он показывает производительность панели. Более правильно было бы использовать выражение , где S является площадью светочувствительных пластин в кв. м. Оно позволяет определить КПД солнечных батарей, а точнее, какую часть света может превратить 1 кв. метр панели в электрическую энергию.

    Второе выражение не используют потому, что результатом будет мощность 1 кв. метра панели. Батарея редко имеет такую площадь. Этот ее показатель значительно больше. Например, вышеупомянутое изделие имеет площадь 1,995 м². В итоге, конечный рассчитанный по формуле результат нужно было бы умножать на площадь. Получилось бы так, что в числителе и знаменателе выражения будет S. А если S делить на S выйдет 1.

    Источник

  • Оцените статью