- Об аккумуляторах .
- Вопросы об аккумуляторах
- Внутреннее сопротивление аккумулятора. Что такое внутреннее сопротивление аккумулятора?
- 1. Что такое внутреннее сопротивление аккумулятора?
- 2. Как связаны внутреннее сопротивление аккумулятора и проводимость аккумулятора?
- 3. От чего зависит внутреннее сопротивление аккумулятора?
- 4. Можно ли использовать внутреннее сопротивление аккумулятора для проверки аккумулятора?
- Внутренее сопротивление аккумуляторов — параметр, позволяющий оценить «здоровье» аккумулятора
- Что такое внутреннее сопротивление аккумулятора?
- Внутреннее сопротивление аккумулятора – что это?
- Как проверить внутреннее сопротивление АКБ
- От чего зависит
- Подача переменного тока
- Метод постоянной нагрузки
- Короткоимпульсный способ
- Зависимость состояния аккумулятора от внутреннего сопротивления
- Измерение внутреннего сопротивления автомобильного АКБ
- Описание параметра
- Связанные факторы
- Измерение сопротивления
- Опыт автолюбителей
Об аккумуляторах .
Вопросы об аккумуляторах
Внутреннее сопротивление аккумулятора. Что такое внутреннее сопротивление аккумулятора?
1. Что такое внутреннее сопротивление аккумулятора?
В озьмем свинцовый кислотный аккумулятор с емкостью 1 А*час и с номинальным напряжением 12 В. В полностью заряженном состоянии аккумулятор имеет напряжение примерно U = 13 В. Какой ток I потечет через аккумулятор, если к нему подключить резистор с сопротивлением R=1 Ом? Нет, не 13 ампер, а несколько меньше — около 12.2 А. Почему? Если мы измерим напряжение на аккумуляторе, к которому подключен резистор, то увидим, что оно примерно равно 12.2 В — напряжение на аккумуляторе упало из-за того, что скорость диффузии ионов в электролите не бесконечно велика.
Э лектрики в своих расчетах привыкли составлять электрические цепи из элементов с несколькими полюсами. Условно, можно и аккумулятор представить в виде двухполюсника с ЭДС (электродвижущей силой — напряжением без нагрузки) E и внутренним сопротивлением r. При этом предполагается, что часть ЭДС аккумулятора падает на нагрузке, а другая часть — на внутреннем сопротивлении аккумулятора. Иначе говоря, предполагается, что верна формула:
П очему внутреннее сопротивление аккумулятора — условная величина? Потому что свинцовый аккумулятор — принципиально нелинейное устройство и его внутреннее сопротивление не остается постоянным, а изменяется в зависимости от нагрузки, заряженности аккумулятора и многих других параметров, о которых мы поговорим чуть позднее. Поэтому точные расчеты работы аккумуляторов нужно проводить, пользуясь разрядными кривыми, предоставляемыми производителем аккумуляторов, а не внутренним сопротивлением аккумулятора. Но для расчетов работы цепей, связанных с аккумулятором, внутреннее сопротивление аккумулятора использовать можно, отдавая себе каждый раз отчет в том, о какой величине идет речь: о внутреннем сопротивлении аккумулятора при зарядке или разряде, о внутреннем сопротивлении аккумулятора на постоянном токе или переменном, а если переменном, то какой частоты и т.д.
Т еперь, вернувшись к нашему примеру, мы можем примерно определить внутреннее сопротивление аккумулятора 12 В, 1 А*час на постоянном токе.
r = ( E — U ) / I = (13В — 12.2В ) / 1А = 0.7 Ом.
2. Как связаны внутреннее сопротивление аккумулятора и проводимость аккумулятора?
П о определению, проводимость — есть величина обратная сопротивлению. Поэтому и проводимость аккумулятора S обратна внутреннему сопротивлению аккумулятора r.
Е диницей проводимости аккумулятора в системе СИ являются Сименсы (См).
3. От чего зависит внутреннее сопротивление аккумулятора?
П адение напряжения на свинцовом аккумуляторе не пропорционально разрядному току. При больших разрядных токах, диффузия ионов электролита происходит в свободном пространстве, а при маленьких токах разряда аккумулятора — сильно ограничивается порами активного вещества пластин аккумулятора. Поэтому внутреннее сопротивление аккумулятора при больших токах в несколько раз (для свинцового аккумулятора) меньше, чем внутреннее сопротивление того же аккумулятора при малых токах.
К ак известно, аккумуляторы большой емкости больше и массивнее аккумуляторов малой емкости. У них больше рабочая поверхность пластин и больше пространства для диффузии электролита внутри аккумулятора. Поэтому внутреннее сопротивление аккумуляторов большой емкости меньше, чем внутреннее сопротивление аккумуляторов меньшей емкости.
И змерения внутреннего сопротивления аккумуляторов на постоянном и переменном токе показывают, что внутреннее сопротивление аккумулятора сильно зависит от частоты. Ниже приводится график зависимости проводимости аккумуляторов от частоты, который взят из работы австралийских исследователей.
И з графика следует, что внутреннее сопротивление свинцового аккумулятора имеет минимум при частотах порядка сотен герц.
П ри высокой температуре скорость диффузии ионов электролита выше, чем при низкой. Эта зависимость имеет линейный характер. Она и определяет зависимость внутреннего сопротивления аккумулятора от температуры. При более высокой температуре, внутреннее сопротивление аккумулятора ниже, чем при низкой температуре.
В о время разряда аккумулятора, количество активной массы на пластинах аккумулятора уменьшается, что приводит к уменьшению активной поверхности пластин. Поэтому внутреннее сопротивление заряженного аккумулятора меньше, чем внутреннее сопротивление разряженного аккумулятора.
4. Можно ли использовать внутреннее сопротивление аккумулятора для проверки аккумулятора?
У же довольно давно известны приборы для проверки аккумуляторов, принцип действия которых базируется на связи между внутренним сопротивлением аккумулятора и емкостью аккумулятора. Некоторые приборы (нагрузочные вилки и подобные приборы) предлагают оценить состояние аккумулятора по напряжению аккумулятора под нагрузкой (что похоже на измерение внутреннего сопротивления аккумулятора на постоянном токе). Применение других (измерителей внутреннего сопротивления аккумулятора на переменном токе) основано на связи внутреннего сопротивления с состоянием аккумулятора. Третий тип приборов (измерители спектров) позволяет сравнивать спектры внутреннего сопротивления аккумуляторов на переменном токе различных частот и делать выводы о состоянии аккумулятора на их основе.
С амо по себе внутреннее сопротивление (или проводимость) аккумулятора позволяет только качественно оценить состояние аккумулятора. К тому же, производители подобных приборов не указывают, на какой частоте происходит измерение проводимости и каким током производится испытание. А, как мы уже знаем, внутреннее сопротивление аккумулятора зависит и от частоты и и от тока. Следовательно, измерение проводимости не дает количественной информации, которая позволила бы пользователю прибора определить, сколько времени проработает аккумулятор при следующем разряде на нагрузку. Этот недостаток связан с тем, между емкостью аккумулятора и внутренним сопротивлением аккумулятора нет однозначной зависимости.
С амые современные тестеры аккумуляторов основаны на анализе осциллограммы отклика аккумулятора на сигнал специальной формы. Они быстро оценивают емкость аккумулятора, что позволяет следить за износом и старением свинцового аккумулятора, рассчитать длительность разряда аккумулятора при данном его состоянии и составить прогноз оставшегося ресурса свинцового аккумулятора.
Источник
Внутренее сопротивление аккумуляторов — параметр, позволяющий оценить «здоровье» аккумулятора
По существующим нормам, основными критериями технического состояния аккумуляторов являются ее фактическая емкость и величина напряжения на элементе всей группы батарей при протекании токов нагрузки. Дело в том, что измерение емкости аккумуляторов требует больших затрат времени и приводит к снижению надежности системы постоянного тока во время проведения испытаний, особенно на тех объектах, на которых нет резервной аккумуляторной батареи и отключение группы батарей от оборудования питания чревато обесточиванием непрерывно работающего дорогостоящего оборудования. Измерение величины снижения напряжения на аккумуляторах при протекании тока требует меньших затрат времени, но не обеспечено необходимым, серийно выпускаемым измерительным оборудованием.
По сути, величина снижения напряжения на элементах аккумуляторной батареи при протекании токов, определяется внутренним сопротивлением элементов.
Полное сопротивление свинцово-кислотного аккумулятора – это сумма таких величин, как сопротивление поляризации и омическое сопротивление. Омическое сопротивление является суммой сопротивлений сепараторов аккумулятора, электродов, положительного и отрицательного выводов, мостовых сварных соединений между элементами и электролита.
На сопротивление электродов оказывает влияние их конструкция, пористость, геометрия, конструкция решётки, состояние активного вещества, наличие легирующих компонентов, качество электрического контакта решёток и обмазки активной массы.
При этом, как известно, у аккумуляторов большей емкости больше рабочая поверхность пластин и больше пространства для диффузии электролита внутри аккумулятора. Поэтому внутреннее сопротивление аккумуляторов большой емкости меньше, чем внутреннее сопротивление аккумуляторов меньшей емкости.
Кроме того, внутреннее сопротивление аккумуляторов зависит и от токов нагрузки. Например, внутреннее сопротивление аккумулятора при больших токах нагрузки в несколько раз меньше, чем внутреннее сопротивление того же аккумулятора при малых токах.
В процессе разряда свинцово-кислотного аккумулятора на поверхности электродов выделяется сульфат свинца (PbSO4). Это плохой проводник, который существенно увеличивает сопротивление электродных пластин. Кроме того, сульфат свинца откладывается в порах активной массы пластин и существенно уменьшает диффузию серной кислоты из электролита в них.
Существенное влияние на сопротивление свинцово-кислотного аккумулятора оказывает и величина сопротивления электролита. Эта величина, в свою очередь, сильно зависит от концентрации и температуры электролита. Так, при уменьшении температуры сопротивление электролита растет и достигает бесконечности при его замерзании. И, наоборот, при высокой температуре скорость диффузии ионов электролита выше и внутреннее сопротивление аккумулятора ниже.
Наиболее оптимальным значением является установленная производителем плотность электролита при температуре 20-25°С, при которой внутреннее сопротивление принимает минимальное значение. При уменьшении или увеличении плотности электролита его сопротивление увеличивается, а, следовательно, растет и внутреннее сопротивление аккумулятора.
Поскольку емкость аккумуляторной батареи связана с ее внутренним сопротивлением и, получив опытным путем значение внутреннего сопротивления, можно оценить и емкость самой аккумуляторной батареи. Так, если внутреннее сопротивление аккумуляторной батареи увеличилось в 2 раза, то можно предположить, что емкость аккумуляторной батареи уменьшилась примерно в 2 раза.
Другими словами, внутреннее сопротивление батареи определяет ее способность отдавать в нагрузку большой ток. Эта зависимость подчиняется закону Ома. При низком значении внутреннего сопротивления батарея способна отдавать в нагрузку большой пиковый ток (без существенного уменьшения напряжения на ее выводах), а значит, и большую пиковую мощность, в то время как высокое значение внутреннего сопротивления приводит к резкому уменьшению напряжения на выводах батареи при резком увеличении тока нагрузки. Это приводит к тому, что внешне хороший аккумулятор не может полностью отдать запасенную в нем энергию в нагрузку.
Регулярность измерений внутреннего сопротивления обеспечивает возможность прогнозирования выработки ресурса аккумуляторной батареи, и планировать ее замену заблаговременно. Считается, что за 1 год сопротивление аккумуляторной батареи, при правильной эксплуатации, должно возрастать, исходя из срока службы, например, в 15 лет, не более, чем на 6-7%. Если скорость увеличения сопротивления элементов превышает ожидаемую, то анализируются условия эксплуатации аккумуляторной батареи, нагрузка, процесс подзаряда и другие. Элементы аккумуляторной батареи, сопротивление которых отличается от среднего, вычисляемого для всех элементов, более чем на 10% подвергаются тренировочному заряду, а, если он не дает нужного эффекта, считаются неисправными и нуждающимися в замене. Тренировочный заряд проводится не всех элементах аккумуляторной батареи от штатного зарядно-подзарядного устройства, а индивидуально, только тех элементов, которые в этом нуждаются, от переносного зарядного устройства.
При обследовании аккумуляторной батареи кроме внутреннего сопротивления ее элементов измеряются сопротивления и межэлементных соединений. Это позволяет своевременно выявлять характерные дефекты, обусловленные коррозией токовыводов аккумуляторов.
Государственный стандарт ГОСТ Р МЭК 60896-2-99 «Свинцово-кислотные стационарные батареи. Общие требования и методы испытаний», соответствующий рекомендациям МЭК, предусматривает определение внутреннего сопротивления аккумуляторов по двум значениям разрядного тока и напряжения. При этом разрядный ток первой ступени выбирается в зависимости от тока десятичасового режима разряда и равен (4–6) I10, напряжение регистрируется на 20 секунде разряда. Ток второй ступени выбирается из расчета (20–40) I10, напряжение регистрируется на 5 секунде разряда. Далее линейной экстраполяцией определяются расчетная ЭДС и ток короткого замыкания аккумулятора. По полученным данным определяют внутреннее сопротивление аккумулятора.
По этой методике проводят испытания многие отечественные аккредитованные специализированные испытательные центры и лаборатории, у которых оборудование позволяет провести это опытным путем.
Обычному пользователю при наличии специального оборудования достаточно измерить внутреннее сопротивление для оценки состояния аккумуляторной батареи в целом. В то же время на сегодняшний день самым объективным способом оценки состояния аккумуляторных батарей является их контрольный 20- или 10-часовой разряд в соответствии с данными тока разряда и конечного напряжения разряда разрядных таблиц завода-изготовителя.
Таким образом, внутреннее сопротивление аккумуляторных батарей является условной величиной. Свинцово-кислотный аккумулятор представляет собой нелинейное устройство, внутреннее сопротивление которого не остается постоянным, а меняется в зависимости от температуры, величины нагрузки, степени заряженности, концентрации электролита и прочих вышеперечисленных параметров. Поэтому для проведения точных расчётов аккумулятора желательно все-таки использовать разрядные кривые, а не величину внутреннего сопротивления.
Оставьте свои контактные данные, и наши специалисты свяжутся с вами, для консультации или оформления заказа
Источник
Что такое внутреннее сопротивление аккумулятора?
Контроль внутреннего сопротивления аккумулятора позволяет поддерживать источник электроэнергии в работоспособном состоянии длительное время. Показатель зависит от многих параметров, способов измерения также существует большое количество.
Внутреннее сопротивление аккумулятора – что это?
Легче всего объяснить эту характеристику любой электрической батареи на примере. Когда берется новая АКБ для автомобиля, в полностью заряженном состоянии ее напряжение составляет 13 В. Если ее подключить к потребителю с минимальным сопротивлением 1 Ом, то при измерении окажется, что сила тока не 13 А, а примерно 12,2 А.
Это противоречит закону Ома: I=U/R. Если 13 В разделить на 1 Ом, должно получиться 13 А. Это объясняется тем фактом, что не только нагрузка, но и сам источник питания обладает сопротивлением. Реакция в нем, в результате которой появляется электроэнергия, проходит с некоторым замедлением.
Падение силы тока при подсоединении любой нагрузки к источнику питания происходит в т. ч. и в результате внутренних процессов в аккумуляторе. Существуют другие факторы, влияющие на его внутреннее сопротивление, что сказывается на действительной силе тока.
Эта величина, которую еще называют проводимостью, импедансом, условная, никогда не бывает постоянной. Она меняется в зависимости от состояния аккумулятора и многих других обстоятельств.
Как проверить внутреннее сопротивление АКБ
Давно существуют приборы, показывающие взаимосвязь емкости и внутренней проводимости. Они оценивают:
- состояние под нагрузкой по напряжению при постоянной величине тока;
- сопротивление при переменном токе;
- приборы для сравнения спектров.
Все способы позволяют получить только информацию о качественном состоянии батареи. Количественные показатели недоступны, т. е. невозможно по внутреннему сопротивлению судить о том, сколько проработает АКБ под нагрузкой. Однозначная зависимость между проводимостью и емкостью отсутствует.
Измерения рекомендуется проводить регулярно. Они позволяют оценить состояние АКБ, планировать покупку новой. Практикой доказано, что показатель с каждым годом возрастает минимум на 5%. Если увеличение превышает 8%, оценивают условия эксплуатации, нагрузку. Возможно, причина кроется в них.
От чего зависит
Показатель проводимости аккумулятора рассчитывают с учетом ЭДС, тока, нагрузки. Получают условную постоянно меняющуюся величину, зависящую от таких условий:
- физических параметров батареи: размера, формы;
- конструктивного исполнения основных элементов;
- состояния электролита;
- присутствия легирующих добавок;
- состояния контактов.
Особенное влияние на импеданс оказывает электролитическая масса: химический состав, концентрация, температурные условия эксплуатации. Зависимость внутреннего сопротивления источников питания от состава электролита:
- Кислотно-свинцовые АКБ отличаются минимальными показателями. Они способны отдать ток силой до 2,5 кА, который необходим для запуска ДВС.
- Среди всех аккумуляторов самый низкий импеданс у NiCd. Он сохраняется даже после 1 тыс. разрядно-зарядных циклов.
- У NiMH импеданс вначале выше. Через 350 циклов он еще увеличивается.
- Характеристики Li-ion батареи лучше, чем NiMH, но уступают NiCd. В процессе эксплуатации импеданс у них не увеличивается, но зато в течение 2 лет Li-ion выходят из строя, даже если не эксплуатировались.
Поддерживать низкий импеданс особенно важно для устройств с высоким импульсным током потребления, например мобильных телефонов. Если никелевые аккумуляторы не обслуживать, их проводимость резко возрастает.
Подача переменного тока
Самый простой способ, но требует до 2 часов времени. Понадобятся:
- постоянный резистор определенного номинала;
- ограничительный трансформатор;
- конденсатор;
- цифровой вольтметр.
Последний прибор может быть самым простым. Цифровая индикация необходима для большей точности измерений.
Несмотря на простоту метода, существуют факторы, которые не позволяют с уверенностью оценить внутреннее сопротивление. Значения при измерениях включают активные и реактивные параметры, учитывают частоту. Влияние оказывают химические реакции, протекающие в электролите.
Метод постоянной нагрузки
Способ, более часто используемый по сравнению с предыдущим. Применяется к батареям для автотранспорта. В течение нескольких секунд их разряжают под нагрузкой. Вольтметром фиксируют напряжение до разряда и после него. По закону Ома проводят вычисления.
Для старых АКБ метод неподходящий – он не позволяет определить их состояние. Нагрузка измеряется.
Короткоимпульсный способ
Сравнительно новаторский метод, обладающий следующими преимуществами:
- Батарея остается на своем месте, не отключается, что избавляет от лишней работы.
- При измерении изменение напряжения краткосрочное, что не влияет на работоспособность оборудования.
- Из приборов нужен вольтметр.
- Тестируют регулярно, но на состоянии АКБ это не сказывается.
Параллельно определяется емкость при сравнении новой и эксплуатируемой батарей. Учитываются сила тока, короткие замыкания. Метод позволяет сделать выводы о состоянии АКБ.
Зависимость состояния аккумулятора от внутреннего сопротивления
Провести измерения можно самостоятельно собранными устройствами, но большинство отдают предпочтение промышленным. Они позволяют оценить состояние аккумулятора, его основные характеристики. Рынок предлагает изделия с необходимыми функционалами.
Среди таких приборов:
- Нагрузочные вилки – проверяют напряжение АКБ. Позволяют установить необходимую нагрузку.
- Устройства, помогающие установить связь состояния батареи с импедансом.
- Измерители спектров, позволяющие определить проводимость при переменном и постоянном токе.
Разные измерительные устройства служат для определения внутреннего сопротивления. Тестеры подают сигналы, по которым устанавливают работоспособность АКБ, емкость, время заряда и разряда. Показатели взаимосвязаны, но зависимость в одних случаях больше, в других – меньше.
Измерение внутреннего сопротивления автомобильного АКБ
Особенное влияние оказывает величина импеданса на автомобильные аккумуляторы. Если эксплуатация транспортного средства активная как в городе, так и на трассе, сельских дорогах, импеданс оказывает большое влияние на продолжительность службы батареи. Регулярное тестирование позволяет определить, когда пригодность АКБ для работы приближается к финишу.
Описание параметра
Сопротивление принято обозначать R. В автомобильном аккумуляторе это сумма сопротивлений омического и поляризации. В свою очередь, омическое R слагается из сопротивлений, которые возникают в электролите, на соединениях банок, на контактах, электродах, сепараторах.
Импеданс проявляется в отношении тока внутри батареи независимо от того, разрядный он или зарядный. Все элементы АКБ имеют свою проводимость, которая различается.
Связанные факторы
Конструкции аккумуляторов, применяемые материалы разные, поэтому показатели неодинаковые. Например, плюсовая решетка имеет R в 10 тыс. раз меньше, чем у нанесенного на нее свинца. На минусовой решетке разница неощутимая.
Технология изготовления электродов также различается, что сказывается на показателях. Сюда относятся: качество материала, контактов, конструкция, присутствие легирующих компонентов.
На R сепараторов влияют толщина и пористость материала. Сопротивление электролита зависит от его температуры, концентрации.
Измерение сопротивления
Точное измерение внутреннего сопротивления невозможно без использования графиков разрядных кривых. На него влияют заряженность АКБ, нагрузка, температура. Автолюбители пользуются более простым способом, позволяющим судить о состоянии источника питания.
Пользуются лампой из фары, например галогеновой на 60 Вт, и тестером. Светодиодную не следует применять ни в коем случае. Лампочку и мультиметр подключают к батарее последовательно. Записывают показания вольтметра. Отключают нагрузку и смотрят напряжение, которое окажется больше.
Сравнивают показания измерительного прибора. Проводят расчет: если разница не превышает 0,02 В, состояние АКБ хорошее – импеданс не больше 0,01 Ом.
Пользуются вольтметром с цифровой индикацией: на стрелочном трудно зафиксировать точные показатели.
Опыт автолюбителей
Отзывы водителей разные. Небольшая часть предпочитает проверять АКБ в мастерских. Другие, которые поняли процесс и значение этого параметра для жизнедеятельности аккумулятора, уделяют несколько минут для регулярной проверки.
При этом автолюбители советуют обратить внимание на такие моменты:
- Не следует слепо руководствоваться абсолютными показателями, взятыми из специальной литературы, интернета. Более полезно сравнивать старые показатели с новыми.
- Существуют нормы для каждой АКБ. Их берут из инструкции или оригинальной упаковки.
- Регулярное измерение импеданса позволяет отслеживать изменения в батарее. В одних случаях достаточно найти и устранить причину, в других – это сигнал о необходимости замены АКБ в ближайшем будущем.
Параметр важный. Если измерять его регулярно, это позволит избежать многих проблем. Так считают большинство автолюбителей независимо от того, проводят они измерения сами или обращаются к мастерам.
Источник