Как изготовлен аккумулятор литиевый

Как устроен Li-Ion аккумулятор?

Автономную работу всевозможных устройств,отмобильных гаджетов до персонального электротранспорта, обеспечивают аккумуляторы. С учетом необходимых значений емкости и напряжения, они объединяются в аккумуляторные батареи. Ключевые характеристики АКБ – емкость, напряжение, масса, время восполнения заряда, допустимый температурный режим – зависят от типа используемой химии.

Для автономного питания современной техники успешно используются литий-ионные аккумуляторы. Они имеют большой циклический ресурс, малый саморазряд, широкий температурный диапазон и солидную удельную емкость. Катод у таких элементов выполнен из производных лития, а заряд переносят ионы Li. Далее мы подробнее рассмотрим устройство Li-ion аккумуляторов и принцип их работы.

Как устроена литий-ионная батарея?

В основе конструкции литий-ионного аккумулятора– 2 составляющие: анод, выполненный из пористого углерода на фольге из меди, и катод – из оксида лития на фольге из алюминия. Их разделяет пористый сепаратор из полипропилена, обильно пропитанный электролитом, который выполняет функции проводника. Система находится в герметичном корпусе. Электроды подключены к токосъемникам. Некоторые аккумуляторы дополнительно имеют клапан-предохранитель для сброса внутреннего давления.

Пластины из меди и алюминия, смазанные электролитом и разделенные пористой прослойкой, обычно сворачиваются в рулон. В итоге получается элемент цилиндрической формы. При другом способе укладки пластин получаются изделия в форме призм и пакетов. Состав катода бывает разным: LiMn2O4, LiFePO4, LiCoO2,LiMnO2, LiMnRON, LiC6, LiNiO2и т.д.

Читайте также:  Как зарядить аккумулятор для бензинового генератора

Типы Li-ionаккумуляторов

В зависимости от используемого материала катода литиевые элементы бывают:

  1. Литий-марганцевые (LiMn2O4, LNO). Имеют меньшее внутреннее сопротивление, высокую мощность и умеренную емкость – 100–150 Вт·ч/кг. Стандартные токи заряда и разряда – до 1С, но есть модели с С-рейтингом зарядки до 3С и С-рейтингом разряда до 10С, а в импульсном режиме – до 50С. Ресурс – около 500 циклов. Применяются такие накопители в электроинструменте, силовых агрегатах, медицинском оборудовании.
  2. Литий-кобальтовые (LiCoO2, LCO). Имеют высокую энергоемкость (150–200 Вт·ч/кг), но уступают аналогам по термической стабильности и сроку службы (500–1000 циклов). Токи заряда и разряда для таких элементов не должны превышать 1С. Накопители энергии на основе кобальта встречаются все реже, но еще используются в мобильных телефонах, цифровых камерах, ноутбуках.
  3. Литий-никель-марганец-кобальт-оксидные (NMC, NCM). Обеспечивают высокую мощность и емкость – 150–220 Вт·ч/кг, выдерживают 1000–2000 циклов. Стандартные токи заряда и разряда – 1С. Используются в медицинском и промышленном оборудовании, электровелосипедах и других видах электротранспорта.
  4. Литий-никель-кобальт-алюминий-оксидные (NCA). Отличаются высокой удельной энергоемкостью – 200–260 Вт·ч/кг. Имеют ресурс около 500 циклов, зарядные токи 0,7С и разрядные 1С. Обеспечивают автономное питание промышленного и медицинского оборудования, электрических силовых агрегатов и других устройств, требующих высокой емкости.
  5. Литий-железо-фосфатные (LFP, LiFePO4). Отличаются большим ресурсом (более 2000 циклов), термической и химической стабильностью, высокой безопасностью эксплуатации и малым внутренним сопротивлением. Их удельная энергоемкость составляет 90–120 Вт·ч/кг, ток зарядки – 1С, ток разрядки – до 25С. Используются такие элементы питания в устройствах, для которых важна выносливость аккумов, способность работать на морозе и выдерживать высокие токи нагрузки.
  6. Литий-титанатные (LiTi). Отличаются низким номинальным напряжением (2,4 В) и удельной энергоемкостью 70–80 Вт·ч/кг, но быстро заряжаются, имеют широкий температурный диапазон и ресурс 3000–7000 циклов. Номинальные токи зарядки 1С, максимум – 5С. Допустимые разрядные токи – 10С, а при импульсной подзарядке – 30С. Литий-титанатные элементы считаются самыми безопасными. Используются они в уличном освещении, ИБП, электротранспорте.
Читайте также:  Samsung a51 как проверить аккумулятор

Как работает литиевый аккумулятор?

Принцип работы Li-ion аккумуляторов идентичен для элементов всех типов, независимо от материала катода.Когда на электроды подается напряжение – «плюс» на оксид лития и «минус» на графит – положительно заряженные ионы лития отцепляются от молекул оксида и переходят на углеродную пластинку. В результате протекает окислительная реакция, и аккумулятор заряжается.

При работе литиевого аккумулятора под нагрузкой протекает обратный процесс. Ионы Li + возвращаются на пластинку из оксида лития, в свое стандартное состояние. Графитовая пластинка на фольге из меди становится «минусом», а оксид лития на фольге из алюминия – «плюсом».

Особенности зарядкиLi-ionэлементов

Литий-ионные элементы питания чувствительны к перезаряду. На поверхности анода при чрезмерном заряде осаждается металлический литий. Он выглядит как мелкий мшистый осадок и способен вступать в реакцию с электролитом. На катоде при перезаряде активно выделяется кислород. Внешне это может проявляться в виде интенсивного нагрева, роста давления и разгерметизации элемента.

Заряжаются Li-ionаккумуляторы в 2 этапа:

  1. При стабильном значении тока 0,2С–1С до рекомендованного производителем напряжения, обычно – 4,1–4,2 В. Длится эта стадия около 40 минут.
  2. При неизменном напряжении. Процесс зарядки завершается, когда значение зарядного тока уменьшается до величины, составляющей 3% от начального значения.

Быстрее происходит зарядка в импульсном режиме.Но для продления срока службы литиевых элементов их рекомендуется заряжать током, номинал которого составляет 50% от значения емкости, т.е. 0,5С.

Защита литиевых аккумуляторов

Элементы питания на основе лития защищены от коротких замыканийвнутри системы, например, с помощью 2-слойного сепаратора. Один из его слоев выполняется не из полипропилена, а из аналога полиэтилена. При риске короткого замыкания, к примеру, если дендриты лития прорастают к катоду, защитный слой локально нагревается, частично плавится, становится непроницаемым и блокирует последующее прорастание дендритов.

Для защиты от избыточного заряда и глубокого разряда накопители энергии снабжаются специальными ограничителями – платами защиты по току и напряжению. Они не допускают выхода напряжения за границы рекомендованного диапазона и в критических ситуациях автоматически отключают элемент от питания или нагрузки.

Поэтому для безопасной работы элементов и аккумуляторных батарей важно использовать BMSплаты. В противном случае высок риск повреждения аккумуляторов и их преждевременного выхода из строя. Такой контроллер зарядно-разрядного процесса может устанавливаться и на отдельные аккумуляторы, и на собранную из них батарею.

Производство литиевых элементов питания

Сырье для основных элементов в схеме Li-ion аккумуляторов – катода и анода – имеет вид мелкофракционного черного порошка. Чем мельче частицы, тем больше получается эффективная площадь электродов. Оптимальная форма частиц – сферическая, с гладкими краями, т.к. неровности чувствительны к токовым нагрузкам.

Производственный процесс состоит из следующих этапов:

  1. Порошковидные материалы наносятся в виде суспензии на фольгу. Аноды и катоды обычно производятся в различных цехах, чтобы обеспечить максимальную чистоту материалов. Металлическая фольга играет роль токоприемника.
  2. Фольга с нанесенными материалами сушится, разделяется на полоски и складывается в несколько слоев. Процесс сворачивания строго контролируется, т.к. любые дефекты способны привести к коротким замыканиям внутри системы.
  3. Между пластинами анода и катода зажимается сепаратор, обработанный электролитом.
  4. Пластинки сворачиваются рулоном или по другой схеме и помещаются в корпус.

Готовые изделия проходят тестирование – контролируемый цикл заряда-разряда. Подзарядку начинают с минимального напряжения и с постепенным его повышением.Протестированные изделия заряжаются до оптимального уровня, чтобы исключить риск значительного падения напряжения из-за саморазряда, и поставляются в продажу.

Предыдущая статья нашего блога посвящена сигнализации для электровелосипедов.

Источник

Что такое литий ионный аккумулятор — устройство и виды

Ключевым элементом мобильности электронных устройств является аккумуляторная батарея (АКБ). Растущие требования к обеспечению наиболее длительной их автономности стимулируют постоянные исследования в этой области и ведут к появлению новых технологических решений.

Широко применяемым никель-кадмиевым (Ni-Cd) и никель-металлогидридным (Ni-MH) батареям появилась альтернатива — сначала литиевые аккумуляторы, а затем более совершенные литий-ионные (Li-ion) АКБ.

История появления

Первые подобные аккумуляторы появились еще в 70-е гг. прошлого века. Они сразу получили востребованность благодаря более совершенным характеристикам. Анод элементов был изготовлен из металлического лития, свойства которого позволили повысить удельную энергию. Так появились литиевые аккумуляторы.

У новых батарей был весомый недостаток — повышенная опасность взрыва и воспламенения. Причина крылась в образовании на поверхности электродов литиевой пленки, которая приводила к нарушению температурной стабильности. В момент максимальной нагрузки батарея могла взорваться.

Доработка технологии привела к отказу от чистого лития в компонентах АКБ в пользу использования его положительно заряженных ионов. Литий-ионный аккумулятор оказался удачным решением.

Данному типу ионных аккумуляторов свойственна более высокая безопасность, которая получена за счет небольшого снижения энергетической плотности, но постоянный технологический прогресс позволил свести проигрыш по этому показателю к минимуму.

Устройство

Внедрение литий-ионных аккумуляторов в производство бытовой электроники получило прорыв после разработки батареи с катодом из углеродного материала (графита) и анодом из оксида кобальта.

В процессе разряда батареи происходит выведение ионов лития из материала катода и их включение в оксид кобальта противоположного электрода, при зарядке процесс протекает в обратном направлении. Таким образом, электрический ток создают ионы лития, перемещаясь от одного электрода к другому.

Li-Ion аккумуляторы производятся в цилиндрическом и призматическом исполнении. В цилиндрической конструкции две ленты плоских электродов, разделенных пропитанным электролитом материалом, свернуты в рулон и помещены в герметичный металлический корпус. Катодный материал нанесен на алюминиевую фольгу, анодный — на медную фольгу.

Призматическую конструкцию аккумулятора получают при укладывании прямоугольных пластин друг на друга. Такая форма батареи дает возможность сделать компоновку электронного устройства более плотной. Также выпускаются призматические АКБ с рулонными электродами, скрученными в спираль.

Эксплуатация и срок службы

Долгая, полноценная и безопасная работа литий-ионных аккумуляторов возможна при соблюдении правил эксплуатации, пренебрежение ими не только сократит срок службы изделия, но может привести к негативным последствиям.

Эксплуатация

Ключевое требование к эксплуатации Li-Ion батарей касается температуры — нельзя допускать перегрева. Высокая температура способна причинить максимальный вред, причем причиной перегрева может быть как внешний источник, так и стрессовые режимы заряда и разряда батареи.

Например, нагрев до 45°C приводит к снижению способности удержания заряда АКБ в 2 раза. Такая температура легко достигается при долгом пребывании устройства на солнце или при работе энергетически затратных приложений.

При перегреве изделия рекомендуется поместить его в прохладное место, лучше при этом выключить и извлечь батарею.

Для наилучшего сохранения работоспособности АКБ в условиях летней жары стоит использовать энергосберегающий режим, который имеется на большинстве мобильных устройств.

Низкие температуры тоже отрицательно действуют на ионные аккумуляторы, при температуре ниже -4°C батарея уже не может отдавать полную мощность.

Но холод не так вреден для Li-Ion батарей, как высокая температура, и чаще всего не приводит к необратимому ущербу. Несмотря на то что после прогрева до комнатной температуры рабочие свойства АКБ полностью восстанавливаются, о снижении емкости на холоде не стоит забывать.

Еще одна рекомендация по эксплуатации Li-Ion аккумуляторов — не допускать их глубокой разрядки. Многие АКБ предыдущих поколений обладали эффектом памяти, который требовал разрядки до нуля с последующей полной зарядкой. Li-Ion батареи лишены такого эффекта, при этом единичные случаи полной разрядки не приводят к негативным последствиям, но постоянная глубокая разрядка вредна. Рекомендуется подключать зарядное устройство при уровне зарядки 30%.

Срок службы

Неправильная эксплуатация Li-Ion аккумуляторов способна сократить срок их службы в 10-12 раз. Этот срок напрямую зависит от количества зарядных циклов. Считается, что АКБ Li-Ion типа могут выдерживать от 500 до 1000 циклов с учетом полной разрядки. Более высокий процент остающегося заряда перед началом следующей зарядки существенно увеличивает срок службы АКБ.

Поскольку длительность сохранения работоспособности Li-Ion аккумуляторов в немалой степени определяется условиями эксплуатации, невозможно назвать точный срок службы этих батарей. В среднем, можно ожидать, что батарея такого типа прослужит 7-10 лет при соблюдении требуемых правил.

Процесс зарядки

При зарядке следует избегать избыточно долгого подключения АКБ к зарядному устройству. Нормальное функционирование литий-ионного аккумулятора проходит при напряжении, не превышающем 3,6 В. Зарядные устройства в процессе зарядки подают на вход АКБ 4,2 В. Если превысить время заряда, в аккумуляторе могут начаться нежелательные электрохимические реакции, которые повлекут за собой перегрев со всеми вытекающими последствиями.

Разработчики учли такую особенность — безопасность заряда современных Li-Ion батарей контролируется специальным встроенным устройством, останавливающим процесс зарядки при увеличении напряжения выше допустимого уровня.

Для литиевых АКБ правильным является двухступенчатый способ заряда. На первом этапе батарею нужно заряжать, обеспечивая постоянный зарядный ток, второй этап должен проходить с обеспечением постоянного напряжения и постепенным снижением зарядного тока. Такой алгоритм аппаратно реализован в большинстве бытовых зарядных устройств.

Хранение и утилизация

Литий-ионный аккумулятор может храниться достаточно долго, саморазряд составляет 10-20% в год. Но при этом происходит постепенное снижение характеристик изделия (деградация).

Хранить такие АКБ рекомендуется в защищенном от влаги месте, при температуре +5…+25°С. Недопустимы сильные вибрации, удары и соседство с открытым пламенем.

Процесс утилизации литий-ионных элементов должен проводиться на специализированных предприятиях, имеющих соответствующую лицензию. Около 80% материалов утилизированных АКБ может использоваться повторно в производстве новых батарей.

Безопасность

Литий-ионный аккумулятор даже миниатюрных размеров таит в себе риски взрывного самовозгорания. Такая особенность этого типа АКБ требует соблюдения мер безопасности на всех этапах, от разработки до производства и хранения.

Для повышения безопасности Li-Ion аккумуляторов при изготовлении в их корпус помещают небольшую электронную плату — систему контроля и управления, которая призвана исключить перегрузки и перегрев. Электронный механизм увеличивает сопротивление цепи при росте температуры выше заданного предела. Некоторые модели батарей имеют встроенный механический выключатель, разрывающий цепь при росте давления внутри АКБ.

Также в корпусах батарей часто устанавливают предохранительный клапан, сбрасывающий давление в экстренных случаях.

Плюсы и минусы литиевых аккумуляторов

Преимуществами этого типа батарей являются:

  • высокая энергетическая плотность;
  • отсутствие эффекта памяти;
  • длительный срок эксплуатации;
  • низкий показатель саморазряда;
  • отсутствие необходимости обслуживания;
  • обеспечение неизменных рабочих параметров в относительно широком диапазоне температур.

Обладает литиевый аккумулятор и недостатками, это:

  • риск самовозгорания;
  • более высокая, чем у предшественников, стоимость;
  • необходимость наличия встроенного контроллера;
  • нежелательность глубокого разряда.

Технологии производства Li-Ion аккумуляторов непрерывно совершенствуются, многие недостатки постепенно уходят в прошлое.

Область применения

Высокий показатель энергоплотности литий-ионных батарей определяет основную сферу их применения — мобильные электронные устройства: ноутбуки, планшеты, смартфоны, видеокамеры, фотоаппараты, навигационные системы, различные встроенные датчики и ряд других изделий.

Существование цилиндрического форм-фактора этих аккумуляторов позволяет использовать их в фонариках, стационарных телефонах и прочих устройствах, ранее потреблявших энергию от одноразовых батареек.

Литий-ионный принцип построения АКБ имеет несколько разновидностей, виды отличаются по типу применяемых материалов (литий-кобальтовый, литий-марганцевый, литий-никель-марганец-кобальт-оксидный и др.). Каждый из них находит свою сферу применения.

Помимо мобильной электроники, группа литий-ионных АКБ применяется в следующих областях:

  • электроинструменты ручного типа;
  • портативное медицинское оборудование;
  • источники бесперебойного электропитания;
  • охранные системы;
  • модули аварийного освещения;
  • станции на солнечных батареях;
  • электромобили и электровелосипеды.

Учитывая постоянное совершенствование литий-ионной технологии и успехи в создании АКБ большой емкости при малых размерах, можно прогнозировать расширение областей применения таких аккумуляторов.

Маркировка

Параметры литий-ионных аккумуляторных батарей нанесены на корпус изделия, при этом применяемая кодировка может существенно отличаться для разных типоразмеров. Единый для всех производителей стандарт маркировки АКБ пока не разработан, но самостоятельно разобраться с самыми важными параметрами все же возможно.

Буквы в строке маркировки указывают на тип элемента и использованные материалы: первая буква I означает литий-ионную технологию, следующая буква (C, M, F или N) уточняет химический состав, третья буква R означает, что элемент является перезаряжаемым (Rechargeable).

Цифры в названии типоразмера означают размер аккумулятора в миллиметрах: две первые цифры — диаметр, а две другие — длина. Например, 18650 указывает, что диаметр составляет 18 мм, а длина — 65 мм, 0 обозначает цилиндрический форм-фактор.

Последние в ряду буквы и цифры — специфическая для каждого производителя маркировка емкости. Для указания даты изготовления также не существует единых стандартов.

Какие основные виды аккумуляторных батареек существуют?

Что такое внешний аккумулятор для телефона и какой лучше выбрать?

Как выбрать зарядное устройство для автомобильного аккумулятора

Как правильно выбрать аккумулятор для автомобиля?

В чём и как измеряется емкость аккумулятора?

Как выбрать пуско-зарядное устройство для аккумулятора автомобиля?

Источник

Оцените статью