Расчет выработки энергии ветрогенераторной станцией
Ветрогенератор в автономной системе очень нужен. По большей части тем, что его выработка не имеет ярко выраженной зависимости от сезонов. Солнечные батареи, в наших широтах, хорошо работают летом и плохо зимой, тогда как ветрогенераторы сохраняют свою эффективность в зимний период. Немало важно то, что сильные ветра, как правило, наблюдаются в пасмурную погоду, поэтому совместное применение ветрогенераторов и солнечных панелей достаточно обоснованно. В этой статье мы рассматриваем малые ветроэнергетические установки (ВЭУ) т.е. установки мощностью от 40 Вт до 20 кВт.
Ветрогенераторы достаточно эффективны в прибрежных районах, либо на возвышенностях, где скорости ветра выше и ветра чаще. На большей части территории России средняя скорость ветра составляет 4-5 метров в секунду, что создает неблагоприятные условия для применения ветрогенераторов (и это на высоте 10 м от поверхности земли, стандартная высота расположения анемометра на метеостанциях). Но данные усреднены, поэтому следует изучить энергопотенциал конкретной местности, если существует подозрение, что ветрогенератор может быть эффективен.
Основная проблема ветровых станций заключается в том, что их эффективность мала при низких скоростях ветра. Если внимательно посмотреть на кривую зависимости мощности от скорости ветра, то можно обнаружить следующее: стартовая скорость большинства современных ВЭУ располагаться в пределах 3 — 4 м/с. Но необходимо, чтоб ветровой поток продержался на этом уровне не наименее 10 мин, лишь тогда автоматика даст позволение на запуск ВЭУ. При этом более-менее ощутимая, выработка энергии начнется только при 7 метрах в секунду, а ВЭУ, трудящаяся при средней скорости 6 м/с, генерирует емкость на 44 % большую, чем при скорости 5 м/с…
Многие хотят уменьшить начальную скорость ветра при котором начинается вращаться турбина до 1-2 м/с — мол слабый ветер бывает всегда и пусть в аккумуляторы всегда что-то «капает». Однако, при такой скорости ветер имеет ОЧЕНЬ мало энергии. Если ветрогенератор и вся система рассчитаны на 3-5кВт, то 5-10 Вт не решат никаких проблем.
Перейдем теперь к методам расчета систем с ветряными электростанциями. Покупая устройство, вы будете знать его заявленную номинальную мощность, а также найдете в инструкции график зависимости мощности вырабатываемой «ветряком» от скорости ветра.
Из формулы P=( η*КИЭВ* ρ*V 3 *π*D 2 )/8 видно, что мощность ветрового потока пропорциональна кубу скорости ветра и квадрату диаметра колеса турбины. Это означает, что при увеличении скорости ветра вдвое, мощность потока возрастет в 8 раз, а при увеличении длины лопастей вдвое, мощность ветрогенератора возрастет в 4 раза.
В таблице приведены величины мощности ветровой турбины, в зависимости от скорости ветра и диаметра колеса турбины. Коэффициент эффективности турбины k = 0,25.
V м/с | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
P Вт d = 1м | 3 | 8 | 15 | 27 | 42 | 63 | 90 | 122 | 143 |
P Вт d = 2м | 13 | 31 | 61 | 107 | 168 | 250 | 357 | 490 | 650 |
P Вт d = 3м | 30 | 71 | 137 | 236 | 376 | 564 | 804 | 1102 | 1467 |
P Вт d = 4м | 53 | 128 | 245 | 423 | 672 | 1000 | 1423 | 1960 | 2600 |
P Вт d = 5м | 83 | 196 | 383 | 662 | 1050 | 1570 | 2233 | 3063 | 4076 |
P Вт d = 6м | 120 | 283 | 551 | 953 | 1513 | 2258 | 3215 | 4410 | 5866 |
P Вт d = 7м | 162 | 384 | 750 | 1300 | 2060 | 3070 | 4310 | 6000 | 8000 |
P Вт d = 8м | 212 | 502 | 980 | 1693 | 2689 | 4014 | 5715 | 7840 | 10435 |
P Вт d = 9м | 268 | 635 | 1240 | 2140 | 3403 | 5080 | 7230 | 9923 | 13207 |
P Вт d = 10м | 331 | 784 | 1531 | 2646 | 4200 | 6270 | 8930 | 12250 | 16300 |
Вы видите, как сильно возрастает величина мощности ветрового потока при увеличении скорости ветра только на 1 м/с.
Прежде чем звонить в компанию занимающуюся продажей ветрогенераторных установок надо узнать две цифры:
1) Потребление электроэнергии в месяц в киловатт-часах — все платят за электричество в квартирах или домах ежемесячно и эта цифра поможет оценить Ваши потребности.
Можно эту цифру посчитать примерно и самому, например:
1. Лампочка (сразу лучше меняйте на энергосберегающие или LED) — 20Вт — эквивалент 100Вт обычной (1кВт — это 1000Вт, то есть 20Вт — это 0,02кВт) горит 5 часов в день, поэтому мощность в кВт умножаем на часы работы в месяц — 0,02 * 5 * 30(дней в месяце) = 3кВт*часа в месяц.
2. Холодильник 300Вт, работает примерно 30% времени, то есть 8 часов в сутки — 0,3 * 8 * 30 = 72кВт*часа в месяц.
3. Электрочайник 1,5 кВт, работает 0,5 часа в день — 1,5 * 0,5 *30 = 22,5кВт*часа в месяц
И так далее по всем приборам.
Потом всё суммируете — 3 + 72 + 22,5 = 97,5кВт*час в месяц.
Это и есть месячное потребление — примерно 100кВт*час в месяц в данном примере.
2) Среднегодовая скорость ветра в предполагаемом месте установки — её можно приблизительно узнать в ближайшей метеостанции.
Для выбора инвертора надо знать максимальную (пиковую) мощность потребления электроприборов с небольшим запасом — по ней выбирается его мощность. При наличии этих показателей можно быстро и грамотно подобрать необходимое оборудование, обратившись к продающей его организации.
При выборе оборудования не стоит опираться на мощность ветрогенератора — она сильно зависит от скорости ветра. Это только в бензогенераторе она соответствует указанной в паспорте. 5кВт ветрогенератор при слабом ветре (3-4м/с) выдаёт всего 0,1-0,2 кВт.
Очень часто покупатель ориентируется на максимальную (пиковую) мощность своего потребления и просит постоянно эту мощность — например 5кВт, как в бензогенераторе, например — начинаем разбираться, считать — и оказывается, что для лампочек, холодильника, телевизора и насоса вполне хватает 0,5кВт постоянной мощности — а это две большие разницы. Оценивать своё электропотребление нужно только по киловатт — часам в месяц.
Но и не стоит определять среднюю выдаваемую ветрогенератором мощность по среднегодовой скорости ветра — это будет намного заниженная цифра.
Существует атлас ветров России, в котором есть данные по ветру в 332 метеостанциях. «Роза ветров» так часто употребляемая обывателем в данной теме к ней относится «поскольку-постольку» — это статистика по направлениям ветра, а ветрогенератору всё равно — как часто с какой стороны дует. А вот при определении места установки ветрогенератора «Розу ветров» лучше учитывать, чтобы на направлении основных ветров не оказались высокие строения, деревья и прочие препятствия.
Выбор мачты
Какую мачту выбрать — с растяжками или без?
Если место позволяет, то лучше ставить мачту с растяжками — она будет стоить в 3-5 раз дешевле мачты без растяжек. В настоящее время накоплен уже довольно богатый опыт установки мачт для ветрогенераторов на территории РФ и он позволяет утверждать об этом однозначно.
Иногда предлагают телескопические мачты — они удобны при частых подъёмах и опусканиях, в чём нет особой необходимости при использовании с ветрогенератором. Мощный ветряк на неё не поставишь — не более 1-2кВт, зато стоить она будет намного дороже.
Какой высоты должна быть мачта?
При выборе высоты мачты учитывается рельеф, растительность (близость леса и отдельно стоящие деревья) и застроенность местности. Обычно это от 10 до 20 метров.
- Если местность открытая — практически на поле, например, то вполне хватит мачты высотой и 10м.
- Если местность застроена одноэтажными домиками и имеет небольшие деревья — больше подойдёт 15м мачта.
- Если же рядом двухэтажные дома и высокие деревья или лес — то лучше ставить мачту высотой 20м.
Для ветрогенераторов 1-4кВт мы предлагаем 8 и 12м мачты, поскольку более высокие стоят достаточно дорого для данного класса оборудования.
Конечно, чем выше мачта, тем лучше (чем больше высота — тем сильнее ветер, прямая зависимость), но не всегда более высокая мачта технически или экономически оправдывает себя. Посоветуйтесь со специалистом — обычно простого описания по телефону будет достаточно для определения оптимальной высоты мачты. При выборе высоты мачты учитывается рельеф, растительность (близость леса и отдельно стоящие деревья) и застроенность местности. Обычно это от 10 до 20 метров.
- Если местность открытая — практически на поле, например, то вполне хватит мачты высотой и 10м.
- Если местность застроена одноэтажными домиками и имеет небольшие деревья — больше подойдёт 15м мачта.
- Если же рядом двухэтажные дома и высокие деревья или лес — то лучше ставить мачту высотой 20м.
Высота мачты практически не зависит от мощности ветрогенератора (от 1 до 10кВт). Для ветрогенераторов 1-4кВт мы предлагаем 8 и 12м мачты, поскольку более высокие стоят достаточно дорого для данного класса оборудования.
Все вышесказанное относится к мачтам для ветровых генераторов с горизонтальной осью вращения. Для ветровых генераторов с вертикальной осью вращения при выборе мачты существуют свои резоны, в данной статье не рассматриваемые.
Источник
Как получить энергию ветра
Дата публикации: 14 ноября 2018
Преобразование энергии ветра в электрическую или механическую силу стало основной задачей в современном обществе. Для того чтобы получать энергию ветра, человечество изобрело огромное количество технических средств. Учёные по всему миру пытаются создать нечто новое, что поможет увеличить объемы, получаемой энергии из воздушных масс. Но, каким образом происходит добыча механической или электрической энергии из потоков воздуха?
Что-то подобное вы могли изучать на уроках физики в школе, сейчас мы постараемся объяснить вам, как получают энергию ветра в современной науке.
В каких странах данная отрасль развита наиболее сильно?
Каждая страна в любой точке земного шара старается идти в ногу со временем, и не отставить от общего прогресса. Это провоцирует создание новых технологий, способствующих скорейшему развитию всего человечества.
Добыча энергии альтернативными способами не остается в стороне, а, так как сила ветра считается неиссякаемой, ей уделяется отдельное внимание ученых.
Энергия ветра добывается при помощи специальных ветрогенераторов, которые напоминают по своему виду ветреную мельницу. Однако не обязательно. В Соединённых Штатах Америки уже давно используется ветрогенераторы, которые по своему строению напоминают спираль. Данная форма была адаптировано для городских условий, используется для снабжения электричеством каждого небоскрёба в частности.
Государство в Европе, которое преуспело в разработки ветрогенераторов больше всего – это Дании. 42 % всей электроэнергии добываемой на территории Дани приходится на ветряные электростанции. Этому способствует уникальные климатические условия этой страны. Так как побережье государства омывается Северным морем, на территории страны постоянно дуют сильные ветра. Это способствует постоянному развитию процедуры переработки силы ветра в электрическую и механическую энергии. Для добычи электроэнергии датчане используют ветрогенераторы, которые достигают 260 м в высоту.
Строение такого генератора довольно простое, настолько простое, что даже не опытный электрик сможет собрать его дома. Длина лопасти такого генераторов составляет 80 м. Он способен обеспечить электричеством до 2000 домов. Учитывая то, что население Дании составляет менее 6 миллионов человек, обеспечить все жилые и нежилые постройки альтернативными источниками питания – не составляет особого труда для государства.
В среднем в Евросоюзе процент электричества добываемого при помощи ветрогенераторов равен семи. Давайте более подробно разберём, каким образом работает ветряная электростанция.
Принцип работы ветряной электростанции
Существует два вида ветрогенераторов, которые отличаются друг от друга направленностью вращения:
Также их можно разделять по количеству глупостей, однако это не играет особой роли добычи электроэнергии при помощи ветра. Данный факт становится важным только в том случае, если объемы добываемого электричества должны быть очень большими. Например, если вы хотите снабдить ветрогенератором небольшой частный дом, тем самым автоматизировать его, сделать независимым от центрального электроснабжения, вам понадобится более мелкий прибор. Он будет иметь не три лопасти, как мы привыкли видеть обычно на больших образцах, а больше.
Однако, получение энергии из ветра возможно именно из-за глупостей. Металл, из которого они будут изготовлены, напрямую влияет на объем вырабатываемого электричества.
В классической ветряной электростанции, большую роль, чем лопасти, играет, непосредственно, электрогенератор и числовое программное устройство. Именно эти приборы позволяют преобразовывать полученную кинетическую энергию в электрическую или механическую.
Но, небольшим устройством, без которого работа всей ветряной электростанции стало бы невозможной, является датчик направления ветра, также именуемый анимоментром. Его неисправная работа может привести к поломке всей ветряной электростанции, или снизить количество добываемый электроэнергии до минимума. Все объясняется банально и просто. Если устройство не будет знать, откуда дует ветер, то не сможет работать. Направленность лопастей навстречу ветру обязательна для нормального функционирования всего механизма.
После того как лопасти начали вращаться, электро генератор преобразовывает механическое вращение в электрическую энергию, и направляет в аккумуляторы или сразу в сеть.
Отраслей, где используется энергия ветра, с каждым днём становится все больше. Причиной тому есть возможность преобразования силы ветра, как в электрическую, так и в механическую энергию.
Берегите энергию, и пользуйтесь ей правильно!
Источник