Импульсная зарядка для li-ion аккумуляторов
Всем нам уже все уши прожужжали, что литий-ионные аккумуляторы правильнее всего заряжать постоянным током до напряжения 4.2 В. По достижении данного значения считается, что аккумулятор набрал где-то 70-80% своей максимальной емкости. К слову сказать, этот момент наступает достаточно быстро и чем больше был ток заряда, тем быстрее.
Теперь остается зафиксировать на аккумуляторе это напряжение и подержать его так еще какое-то время. За это время аккумулятор должен набрать еще процентов 20 емкости. Ток заряда при этом будет неуклонно снижаться но, что немаловажно, до нуля так никогда и не дойдет. Окончанием заряда можно считать снижение тока до
0.05 от номинальной емкости (той, которая указана на этикетке).
Описанная логика по своей сути очень правильная и в первом приближении не имеет недостатков: быстрый набор основной емкости, четко заданные критерии перехода к фазе снижения тока и момента окончания зарядки. Но так ли это?
На самом деле, для описанной выше логике работы зарядных устройств порог в 4.2 вольта выбран далеко не случайно. Дело в том, что длительное прикладывание повышенного напряжение к li-ion аккумуляторам ведет к деградации их электродов и электродных масс (электролита) и, как следствие, потери емкости. А так как фаза заряда с фиксированным напряжением и падающим током обычно довольно длительная, то желательно ограничить напряжение сверху на уровне 4.2 (или 4.24В). Что и делается на практике.
Однако, более правильным было бы контролировать напряжение на аккумуляторе не тогда, когда через него протекает большой зарядный ток, а во время холостого хода. Дело в том, что в зависимости от величины внутреннего сопротивления батареи и тока, напряжение на аккумуляторе может запросто достигать 4.3 и даже 4.4 Вольта (если, конечно, нет PCB-модуля, который отрубит акб из-за перенапряжения). Таким образом, зарядное устройство перейдет в режим стабилизации напряжения немного раньше, чем хотелось бы, увеличивая тем самым общее время заряда.
Заряд импульсами тока с паузами между ними
Умная зарядка дейстовала бы следующим образом: сначала отключила бы зарядный ток, выждала бы небольшую паузу, измерила бы напряжение холостого хода на аккумуляторе и на основании этого приняла бы решение о своих дальнейших действиях. Чем ближе напряжение приблизилось к 4.15В (это напряжение полностью заряженного аккумулятора), тем более короткий импульс зарядного тока выдает зарядка. Как только напряжение достигнет заданного порога (4.15 вольта), импульсы тока совсем прекратятся.
Вот как это выглядит на графике:
В таком зарядном устройстве можно оставлять аккумулятор на сколь угодно длительное время, и он будет подзаряжаться по мере необходимости.
Мы только что описали еще один (более правильный) способ зарядки литиевых аккумуляторов — импульсный. Но такие зарядки менее распространены, так как для реализации этого алгоритма требуется микропроцессорное управление, что усложняет и удорожает схему.
Схема зарядника
Но не надо грустить! Оказывается, существует схема импульсного зарядного устройства для литий-ионных аккумуляторов БЕЗ МИКРОПРОЦЕССОРА. Вот она:
Как это ни удивительно эта несложная схема в полной мере реализует весь описанный выше алгоритм заряда при полном отсутствии «мозгов». Схема работает следующим образом.
С момент включения схема начинает заряжать аккумулятор постоянным током. Величина тока зависит от напряжения питания и сопротивления резистора RD.
В момент, когда напряжение на элементе при наличие зарядного тока начинает превышать 4,15 Вольта, компаратор (KA393 или KIA70XX) видит это и закрывает транзистор VT1. Далее следует пауза, за время которой напряжение на элементе снижается до своего истинного значения. Т.к. напряжение холостого хода на аккумуляторе ещё не достигло величины 4,15 В, оно вскоре упадет ниже этого значения. Компаратор, увидив это, вновь откроет зарядный ключ.
Процесс будет повторяться снова и снова, с той лишь разницей, что по мере зарядки аккумулятора импульсы зарядного тока будут всё время сокращаться, а длительность паузы между импульсами, наоборот, увеличиваться. То есть будет увеличиваться скважность импульсов.
Ближе к концу зарядки длительность импульса зарядного тока составляет доли процента от длительности паузы между ними, а напряжение на элементе будет практически равно 4,15 Вольта (конкретное значение выставляется потенциометром R1 при настройке схемы).
Теперь о деталях. Разумеется, можно использовать обычный трансформатор без средней точки. Прекрасно можно обойтись и однополупериодным выпрямителем. А еще проще взять в качестве питания какой-нибудь уже готовый 5-вольтовый зарядник от сотового телефона. Чтобы его не спалить возможно придется еще сильнее ограничить ток заряда, увеличив RD, например, до 0.47 Ом.
Транзисторы что-то типа KTA1273. Силовой полевик указан на схеме, но еще лучше взять PHB108NQ03LT (выпаять из старой материнской платы от компа).
Подстроечник 470 Ом. И не самых маленьких размеров, т.к. он все-таки должен рассеивать какую-то мощность. Брать более 470 ом не советую, т.к. это увеличивает гистерезис срабатывания микросхемы KIA (микросхема может просто вырубить зарядку вместо того, чтобы генерировать импульсы, как задумано).
Схемы можно объединять в последовательные цепочки. Это позволяет заряжать батареи из последовательно соединенных аккумуляторов.
Схему можно значительно упростить, выкинув необязательные цепи, а также заменив полевик на обычный биполярный транзистор. Вот, например, парочка вполне рабочих вариантов:
Транзистор можно заменить на наш дубовый КТ837. Питания лучше не делать больше 6 вольт, т.к. чем оно выше, тем сильнее все будет греться. Резистором R1 при сильно разряженном аккумуляторе нужно ограничить ток на уровне 700-800 мА, этого будет вполне достаточно для одного элемента li-ion. При подборе резистора главное не превысить максимальную мощность силового транзистора и способности источника питания.
Если не получилось найти микросхемы KIA70хх, их можно заменить другими детекторами напряжения, например, BD4730. Вот вариант зарядки с этой микросхемой:
Для того, чтобы настроить схему, необходимо отловить момент, когда напряжение на аккумуляторе станет ровно 4.2В и в этот момент выставить на 5-ом выводе микросхемы напряжение 2.99 Вольта (при помощи резистора R6). Если есть регулируемый блок питания, можно выставить на нем ровно 4.2 Вольта и на время настройки подключить его вместо аккумулятора.
Любая из этих схем позволяет заряжать литиевые аккумуляторы любых типоразмеров и емкостей (с учетом коррекции зарядного тока) — от небольших элементов в призматических корпусах до циллиндрических 18650 или гигантских 42120.
Источник
Пример импульсного зарядного устройства для автомобильного аккумулятора
Многим владельцам автомобилей знакома картина, когда они, садясь за руль, обнаруживают, что заряда аккумулятора не хватает для запуска двигателя. В такой ситуации придётся подумать о зарядки автомобильной батареи. Поэтому всегда нужно иметь под рукой зарядное устройство (ЗУ) для автомобильного аккумулятора. Тогда вы сможете в такой ситуации подзарядить севший аккумулятор и завести мотор. Если у вас ещё нет зарядки, то пора заняться её выбором. В этой статье мы поговорим об импульсных зарядных устройствах для автомобильного аккумулятора. Рассмотрим, чем они отличаются от других ЗУ и приведём несколько примеров таких устройств со схемами.
Какие есть зарядные устройства для автомобильных аккумуляторов?
В основном ЗУ подразделяют по их назначению на 3 большие группы:
Импульсные ЗУ для автомобильного аккумулятора
Если у вас есть гараж с подведённым электричеством, то имеет смысл купить пуско-зарядное устройство. В этом случае при необходимости вы сможете запустить мотор при посаженной АКБ. А если ЗУ будет использоваться только для зарядки аккумулятора, то тогда берите простую модель без лишних опций.
По конструкции зарядные устройства подразделяются на импульсные и трансформаторные. В составе трансформаторных моделей есть выпрямитель (диодный мост) и понижающий трансформатор. В конструкции инверторных зарядок работает инвертор и предусмотрена защита от короткого замыкания. Модели на основе трансформатора имеют большие размеры. Обычному пользователю рекомендуется выбирать импульсные зарядки, как более современные, компактные и лёгкие. Они стоят немного больше трансформаторных.
Пример импульсного ЗУ для аккумулятора автомобиля
Далее рассмотрена схема и принцип работы импульсного ЗУ из книги «Зарядные устройства», авторы Ходасевич А. Г. и Ходасевич Т. И. Это зарядное устройство перед тем, как проводить зарядку, разряжает АКБ до напряжения 10,5 вольта. При этом используется ток величиной С/20. С – ёмкость аккумулятора. После этого напряжение на аккумуляторе повышается до 14,2─14,5 вольта с помощью зарядно-разрядного цикла. При этом соотношение величины токов заряда и разряда составляет 10 к 1. Соотношение времени заряда и разряда равно 3 к 1. Ниже можно посмотреть основные характеристики зарядного устройства:
Характеристика | Значение |
---|---|
Регулируемый зарядный ток, ампер | 2,5-7 |
Время зарядного импульса, сек | 17 |
Время разрядного импульса, сек | 5 |
Потребляемая мощность, ватт | 30-90 |
Характеристика | Значение |
На рисунке ниже приведена принципиальная схема импульсного ЗУ.
Принципиальная схема импульсного ЗУ
- Переключатель SA3 установлен в положение «Заряд». Когда включена сетевая кнопка SA1, устройство работает, как обычная зарядка с регулируемой силой тока. Разряд при этом не выполняется;
- Переключатель SA2 установлен в положение «Десульфатация». В этом режиме происходит заряд-разряд аккумулятора. Если нажата кнопка SB1, то перед зарядом выполняется разрядка АКБ током 2,5 ампера до напряжения 10,5 вольта. После этого аккумулятор заряжается до напряжения 14,2─14,5 вольта. По окончании процесса ЗУ автоматически отключается. Если переключатель SA3 находится в положении «Многократно», этот процесс повторяется, пока не будет прерван пользователем. Используется для восстановления аккумуляторной батареи.
Как работает устройство? На сетевой фильтр С1, С2, С3, L1 подаётся напряжение 220 вольт из бытовой электросети. Роль фильтра – это задержка помех из электросети. Далее производится выравнивание напряжения на диодах VD1, VD2, VD3, VD4 и сглаживание при помощи конденсатора C5. Роль резистора R3 заключается в ограничении зарядки конденсатора C5. U1 – это оптрон, который отвечает за контроль напряжения в сети. Когда напряжения нет, производится блокировка элемента DD2.3 и отключается режим зарядки аккумуляторной батареи.
Когда подключается аккумулятор, компаратор DA1 приходит в положение «1» и открывается транзистор VT5. В таком положении загорается светодиод HL2, сигнализирующий о включении режима «Заряд». С коллектора VT5 напряжение поступает на DD1.3 (9 вывод) и DD1.4 (13 вывод). В результате происходит разблокировка низкочастотного генератора. При этом скважность импульсов регулируется резисторами R4 (разряд) и R6 (заряд). Частота импульсов определяет ёмкость конденсатора C2.
Когда происходит разряд, то на «10» выводе DD1.3 блокируется преобразователь и на «11» выводе DD1.3 устанавливается 1. Происходит срабатывание ключей на VT3 и VT4. В результате происходит разряд аккумулятора лампочкой HL1. Чтобы она не перегорела, лампочка рассчитана с двойным запасом по напряжению.
Когда нажимается кнопка SB1 «Пуск», то компаратор DA1 переходит в положение «0». В результате закрывается транзистор VT5 и происходит блокировка генератора на DD1 и преобразователя напряжения. На «3» выходе DD2.1, D2.2 появляется 1. Если сетевое напряжение подано, то на входах DD2.3 устанавливается 1. На выходе DD2.4 срабатывают транзисторы VT7, VT8 и загорается светодиод HL4, который показывает «Разряд». В таком режиме устанавливается разрядный ток через лампочку HL3. Напряжение лампы 12 вольт, мощность 30 ватт.
Разряд идёт до напряжения на аккумуляторе до 10,5 вольта пока не срабатывает компаратор R20, R21, DA1. После этого на выходе DA1 снова устанавливается 1 и начинается цикл заряда. Когда напряжение батареи доходит до 14,2 вольта срабатывает компаратор R11, R14, DA1. В случае, когда переключатель SA3 был установлен в положение «Однократно», светодиод HL2 потухнет и устройство прервёт заряд. Если SA3 был установлен в «Многократно», то будет запущен новый цикл и начнётся разряд.
Конденсаторы C6, C7 защищают цепь от помех и задерживают срабатывание компараторов при переходе из одного режима в другой. Стабилизатор DA3 защищает микросхемы при кратковременном исчезновении контакта на выводах АКБ, поскольку в режиме холостого хода напряжение на выходе преобразователя подскакивает до 25 вольт.
Разработчики устройства говорят, что может потребоваться начальная регулировка пороговых компараторов. Чтобы это выполнить, делается отключение лампочек HL1, HL3 для снижения нагрузки. Затем к регулируемому блок питания подключаются клеммы X1 и X2. Напряжение блока питания выставляется 10,5 вольта и регулировкой резистора R21 добиваются того, чтобы произошло включение HL2. После этого, устанавливается напряжение 14,2 вольта и резистором R11 добиваются включения HL2. После этой регулировки подключаются лампочки и зарядное устройство для автомобильного аккумулятора готово к работе.
Теперь немного о комплектующих этого импульсного зарядного устройства. Трансформатор использован самодельный на основе дросселей телевизора УПИМЦТ, отвечающих за строчную развёртку. Трансформатор имеет следующую обмотку:
- Обмотки I и II намотаны в два провода, а III – в семь;
- В I обмотке 91 виток (провод ПЭВ-2, диаметр 0,5 миллиметра);
- II обмотка имеет 4 витка аналогичного провода;
- В III обмотке 9 витков провода ПЭВ-2 (диаметр 0,6 миллиметров).
При сборке трансформатора в сердечнике устанавливается зазор 1,3 миллиметра с помощью картонных прокладок. В роли шунта выступает нихром толщиной 0,2 миллиметра и сопротивлением 0,1 Ом. Резисторы R11 и R21 являются многооборотными (тип СП5-2). Резистор R27 относится к типу СП3-4ам.
Диоды VD13 и VD14 относятся к типу КД213А(Б). Авторы схемы рекомендуют заменить их диодами Шоттки типа КД2997А и КД2999А. Диод VD12 рассчитан на ток 2─3 ампера (30 кГц) и напряжение 600─800 вольт. Оптроны U1 и U2 относятся к типу АОТ127. Напряжение изоляции у них должно быть не меньше 500 вольт.
Сообщается, что КТ315 могут быть заменены любыми КТ312 и КТ3102, рассчитанными на 30 вольт. VT3 относится к типу КТ801 А(Б). VT7 – это тип KT819 А (Б, В). Конденсаторы на схеме:
- C2 допускается заменить на электролитический;
- C1, C19, C22 – тип К78-2;
- С3, С4 – тип К15-5, напряжение не менее 600 В;
- C5 – ёмкость 220 мкФ, 400 В. Или два по 100 мкФ, 400 вольт (тип К50-32);
- Остальные конденсаторы на схеме относятся к типу K50-35.
Схема охлаждения для зарядного устройства
Вентилятор будет обдувать греющиеся детали. Также можно установить небольшие радиаторы для деталей VD13 и VD14. Предлагается сделать их дюралюминия габаритами 5 на 80 на 65 миллиметров. Для VT1 разработчики схемы предлагают сделать дюралюминиевый радиатор 22 на 15 на 30 миллиметров с рёбрами.
В качестве возможной доработки также предлагается индикатор тока PA1. Это амперметр с лимитом измерений 10 ─ 0 ─ 10 ампер. То есть, зарядный и разрядный ток. Авторы предлагают использовать прибор М4761, который ранее использовался в магнитофонах. Стрелку на нём предлагается сместить в середину шкалы, чтобы был виден ток заряда и разряда.
А также можно использовать индикатор, показывающий ток на светодиодах с интервалом 0,5 ампера. Схема этого устройства показана ниже.
Схема индикатора тока для импульсного ЗУ
Преобразователь полярности и усилитель амплитуды сделаны на основе DA1 и DA2. Индикатор собран на базе DA3. Отмечается, что для этого индикатора нужно сделать дополнительный преобразователь питания на базе DA1 и DA2 (напряжение от – 15 до + 15 вольт).
В интернете и книгах можно найти большое число схем импульсных зарядных устройств для автомобильного аккумулятора. Но охватить их в рамках одной статьи невозможно.
Вернуться к содержанию
Источник