Как аккумулятор буферный режим

Циклический и буферный режимы работы акб

Буферный режим

Буферный режим работы аккумуляторных батарей является самым «любимым» — батарея находится на постоянной подзарядке и очень редко получает глубокий разряд. В таком режиме аккумулятор прослужит вам максимально долго.

Примером использования аккумулятора в буферном режиме может быть источник бесперебойного питания: когда присутствует сеть, аккумулятор постоянно держит заряд, а в момент, когда сеть пропадает, аккумулятор начинает отдавать накопленную энергию. В компьютерных источниках бесперебойного питания обычно используют аккумуляторы 12 В ёмкостью от 7 до 26 А-ч, это даёт возможность компьютеру проработать от аккумулятора дополнительных 10-15 минут при отключении электричества.

Сфера применения при буферном режиме:

  • накопители солнечной энергии
  • источники бесперебойного питания (ИБП)
  • системы аварийного освещения
  • лифты
  • пожарные и охранные системы
  • контрольно-кассовые аппараты
  • аварийные системы

Циклический режим

Циклический режим работы является самым «жёстким» для аккумуляторной батареи. В таком режиме её полностью разряжают, потом ставят на зарядку и снова полностью разряжают. Срок службы в таком случае будет зависеть от глубины разряда аккумулятора.

Большинство свинцово-кислотных аккумуляторов AGM-типа имеют циклический ресурс не более 300 циклов 100% разряда, но уже существуют аккумуляторы нового поколения, циклический ресурс которых составляет 600 циклов 100% разряда.

Сфера применения при циклическом режиме:

  • поломоечные машины
  • лодочные моторы
  • электромобили
  • погрузочная техника и т.д.

Источник

Как аккумулятор буферный режим

Режимы работы аккумуляторных батарей: буферный и циклический

Качественная и долговечная работа аккумуляторной батареи это не только положительный экономический эффект для владельца, но и приятная составляющая эксплуатации. Согласитесь, отказ в работе аккумуляторной батареи в первые 2-3 года эксплуатации и отказ работы батареи на 7-10 году эксплуатации вызывают противоположные эмоции.

Важными эксплуатационными характеристиками являются: температурный режим работы (+10..+25 град.Цельсия) и правильно выбранный режим эксплуатации и подобранный под этот режим работы метод заряда. Стоит отметить, что мы разберем варианты и режимы работы аккумуляторных батарей, которые применяются в ИБП, а в следующей статье разберем как правильно зарядить аккумуляторы в ИБП. Аккумуляторы для ИБП это, как правило, свинцово- кислотные необслуживаемые и герметичные, производятся по основным двум технологиям: AGM и GEL (гелевый аккумулятор для ИБП).

Чем определяется долговечность работы аккумуляторной батареи?

Общеизвестным фактом и логичным подтверждением является следующее: срок службы аккумулятора в основном определяется количеством процедур заряд-разряд и его глубина разряда. Другими словами: чем реже мы проводим процедуру разряда аккумулятора и чем менее глубоким этот разряд является – тем дольше прослужит аккумулятор.

Среди утвердившихся у пользователей мифов встречается такой: необходимо периодически разряжать аккумулятор «до нуля» и зарядить его до 100%, в противном случае он испортится. Для аккумуляторных батарей среднего и высшего класса – это останется мифом, а для аккумуляторов низкого качества – этот миф станет инструкцией по эксплуатации. В низкокачественных аккумуляторах отсутствие встряски в виде глубокого разряда и полной зарядки – действительно может повлиять на ресурс его работы. В дешевых аккумуляторах применяются материалы низкого качества (например, свинец-вторсырье) и возникающие в аккумуляторе, из-за этого, внутренние окисления (налет) необходимо каким-то образом убирать. В противовес дешевым, — качественные аккумуляторы нуждаются в постоянном подзаряде (буферный заряд) при котором почти отсутствуют глубокие разряды.

Мы не можем обойти тему «эффекта памяти» в аккумуляторных батареях. Суть эффекта памяти состоит в уменьшении емкости аккумулятора. Потеря емкости в таких аккумуляторах происходит вследствие неполного разряда и последующей зарядки до 100% — аккумулятор «запоминает» уровень неполного разряда и ниже этого «не хочет» разряжаться . Считается, что если «потренировать» аккумулятор методом глубокой разрядки и полной зарядки – емкость частично можно восстановить. Этот эффект может возникать в аккумуляторах изготовленных по нескольким технологиям и полностью отсутствует в аккумуляторных батареях, которые применяются в ИБП. Эффект памяти свойственен аккумуляторам производимым по технологии Никель-металл-гидридный (Ni-MH), Никель-кадмиевый (NiCd), Серебряно-цинковый аккумулятор.

Теперь рассмотрим два режима работы аккумуляторов – буферный и циклический, а также как правильно осуществлять зарядку аккумуляторов в этих режимах.

Работа аккумуляторных батарей в буферном режиме

Буферный режим работы аккумуляторной батареи подразумевает периодический несистемный характер использования. Другими словами – в этом режиме аккумуляторы применяются в аварийных случаях, например в ИБП. В буферном режиме аккумуляторная батарея постоянно подзаряжается специально установленным зарядным напряжением и током и в таком режиме эксплуатации может проработать весь заявленный производителем срок, а иногда и больше. Для буферного режима работы подходят аккумуляторы с небольшим параметром цикличности заряд-разряд, и эти аккумуляторы немного дешевле чем высокоцикличные .

Циклический режим работы аккумуляторной батареи

Циклический режим работы – режим, когда с четкой периодичностью аккумулятор подвергается полному заряду и полному разряду. Примерами такого режима работы являются: электротранспорт, поломоечные машины, электропогрузчики, альтернативная энергетика – все те отрасли, где аккумуляторные батареи имеют постоянную периодичность использования. Циклический режим использования аккумуляторных батарей является для них самым жестким испытанием на прочность. Поэтому перед тем как купить аккумуляторную батарею желательно узнать режим ее работы.

© Материал подготовлен специалистами компании НТС-групп (ТМ Электрокапризам-НЕТ!), 2019год

Источник

Буферные емкости и их применение в системах отопления с твердотопливными котлами.

Режимы работы аккумуляторных батарей: буферный и циклический

Качественная и долговечная работа аккумуляторной батареи это не только положительный экономический эффект для владельца, но и приятная составляющая эксплуатации. Согласитесь, отказ в работе аккумуляторной батареи в первые 2-3 года эксплуатации и отказ работы батареи на 7-10 году эксплуатации вызывают противоположные эмоции.

Важными эксплуатационными характеристиками являются: температурный режим работы (+10..+25 град.Цельсия) и правильно выбранный режим эксплуатации и подобранный под этот режим работы метод заряда. Стоит отметить, что мы разберем варианты и режимы работы аккумуляторных батарей, которые применяются в ИБП, а в следующей статье разберем как правильно зарядить аккумуляторы в ИБП. Аккумуляторы для ИБП это, как правило, свинцово- кислотные необслуживаемые и герметичные, производятся по основным двум технологиям: AGM и GEL (гелевый аккумулятор для ИБП).

Чем определяется долговечность работы аккумуляторной батареи?

Общеизвестным фактом и логичным подтверждением является следующее: срок службы аккумулятора в основном определяется количеством процедур заряд-разряд и его глубина разряда. Другими словами: чем реже мы проводим процедуру разряда аккумулятора и чем менее глубоким этот разряд является – тем дольше прослужит аккумулятор.

Среди утвердившихся у пользователей мифов встречается такой: необходимо периодически разряжать аккумулятор «до нуля» и зарядить его до 100%, в противном случае он испортится. Для аккумуляторных батарей среднего и высшего класса – это останется мифом, а для аккумуляторов низкого качества – этот миф станет инструкцией по эксплуатации. В низкокачественных аккумуляторах отсутствие встряски в виде глубокого разряда и полной зарядки – действительно может повлиять на ресурс его работы. В дешевых аккумуляторах применяются материалы низкого качества (например, свинец-вторсырье) и возникающие в аккумуляторе, из-за этого, внутренние окисления (налет) необходимо каким-то образом убирать. В противовес дешевым, — качественные аккумуляторы нуждаются в постоянном подзаряде (буферный заряд) при котором почти отсутствуют глубокие разряды.

Мы не можем обойти тему «эффекта памяти» в аккумуляторных батареях. Суть эффекта памяти состоит в уменьшении емкости аккумулятора. Потеря емкости в таких аккумуляторах происходит вследствие неполного разряда и последующей зарядки до 100% — аккумулятор «запоминает» уровень неполного разряда и ниже этого «не хочет» разряжаться . Считается, что если «потренировать» аккумулятор методом глубокой разрядки и полной зарядки – емкость частично можно восстановить. Этот эффект может возникать в аккумуляторах изготовленных по нескольким технологиям и полностью отсутствует в аккумуляторных батареях, которые применяются в ИБП. Эффект памяти свойственен аккумуляторам производимым по технологии Никель-металл-гидридный (Ni-MH), Никель-кадмиевый (NiCd), Серебряно-цинковый аккумулятор.

Теперь рассмотрим два режима работы аккумуляторов – буферный и циклический, а также как правильно осуществлять зарядку аккумуляторов в этих режимах.

Работа аккумуляторных батарей в буферном режиме

Буферный режим работы аккумуляторной батареи подразумевает периодический несистемный характер использования. Другими словами – в этом режиме аккумуляторы применяются в аварийных случаях, например в ИБП. В буферном режиме аккумуляторная батарея постоянно подзаряжается специально установленным зарядным напряжением и током и в таком режиме эксплуатации может проработать весь заявленный производителем срок, а иногда и больше. Для буферного режима работы подходят аккумуляторы с небольшим параметром цикличности заряд-разряд, и эти аккумуляторы немного дешевле чем высокоцикличные .

Циклический режим работы аккумуляторной батареи

Циклический режим работы – режим, когда с четкой периодичностью аккумулятор подвергается полному заряду и полному разряду. Примерами такого режима работы являются: электротранспорт, поломоечные машины, электропогрузчики, альтернативная энергетика – все те отрасли, где аккумуляторные батареи имеют постоянную периодичность использования. Циклический режим использования аккумуляторных батарей является для них самым жестким испытанием на прочность. Поэтому перед тем как купить аккумуляторную батарею желательно узнать режим ее работы.

© Материал подготовлен специалистами компании НТС-групп (ТМ Электрокапризам-НЕТ!), 2020год

Буферное зарядное устройство свинцовых аккумуляторов

При эксплуатации свинцовых аккумуляторов в нормальном режиме существует два основных способа их зарядки:

  • быстрый — метод поддержания постоянного зарядного тока до полной зарядки;
  • буферный — I-U зарядка стабильным током до определённого напряжения и дальнейшее его ограничение.

Оба способа имеют как достоинства, так и недостатки и находят своё применение. Здесь и далее по тексту, если не указано другое, то имеется в виду двенадцати-вольтовая аккумуляторная батарея (с номинальным напряжением 12,6 Вольт). При первом способе зарядка выполняется сравнительно быстро и аккумулятор заряжается до полной своей ёмкости при конечном напряжении 14,5-15 Вольт, но в конце зарядки из-за высокого напряжения на электродах происходит обильное газообразование и этим самым снижается срок службы батареи:

Во втором случае зарядка происходит гораздо дольше с ограничением конечного напряжения 13,6-13,8 Вольт и с большИм падением зарядного тока после достижения 80-90% заряда. Выделение газов при этом незначительно, или вовсе отсутствует, как в современных герметичных гелиевых аккумуляторах. В этом режиме такие аккумуляторы могут без проблем проработать весь свой срок эксплуатации:

Быструю зарядку чаще применяют для аккумуляторов, работающих в циклическом режиме, например в детских электромобилях. А в буферном режиме батареям приходится находится в источниках бесперебойного и аварийного питания. Если долгая продолжительность зарядки не критична, то для циклической эксплуатации батарей так же можно использовать буферный режим, но время зарядки в таком случае будет довольно большим.

В наличии как раз имелось зарядное устройство для быстрой зарядки аккумуляторных батарей детских электромобилей. Судя по наклейке на корпусе оно должно заряжать аккумулятор до 14,5 Вольт током 4 Ампер, питаясь от сети переменного тока напряжением 100-240 Вольт частоты 50/60 Герц, и потребляя при этом мощность до 58 Ватт:

Это довольно высокие значения с учётом того, что предназначено оно для зарядки аккумуляторов с ёмкостью до 8 А·ч, и максимально допустимый зарядный ток для таких батарей составляет 2-2,5 Ампер.

Зарядное устройство моноблочного типа «вилка на корпусе» и имеет сетевой разъём европейского стандарта:

Возле места расположения индикаторных светодиодов передняя часть корпуса имеет вентиляционные щели, которые были деформированы при эксплуатации в результате сильного внутреннего нагрева:

После замеров было установлено, что зарядное устройство на холостом ходу без подключённой нагрузки выдаёт постоянное напряжение почти 15 Вольт:

При этом не имеется в наличии системы отключения нагрузки по окончанию процесса, что обязательно для режима быстрой зарядки. А это нехорошо скажется на долговечности аккумулятора и с каждым циклом будет сильно уменьшать оставшийся ресурс и срок службы. Данное зарядное устройство планировалось использовать для зарядки герметичного AGM-аккумулятора для которого рекомендованное напряжение буферного режима составляет 13,6-13,8 Вольт:

Было принято решение попробовать переделать зарядное устройство, так как зарядка батарей таким режимом нежелательна. Правда устройство имеет два индикаторных светодиода — красный для индикации напряжения на выходных клеммах, и зелёный для предупреждения о снижении зарядного тока ниже определённой величины и следовательно достижения на аккумуляторной батарее максимального потенциала. Но так как зарядка в таком случае не прекращается, то если вручную не отключить устройство от сети, батарея всё последующее время будет находится под высоким потенциалом, что в свою очередь вызовет газообразование в электролите и этим самым будет происходить преждевременное быстрое старение аккумулятора.

Блок зарядного устройства был разобран для изучения элементов стабилизации и/или ограничения максимального выходного напряжения и оценки возможности коррекции электрических параметров. После разборки и быстрого внешнего осмотра стало понятно, что заявленные на этикетке параметры явно завышены и блок не в состоянии долговременно обеспечивать указанный в 4 А зарядный ток и рассеивать мощность 58 Вт. Охлаждающие радиаторы на микросхеме преобразователя и на выпрямительном диоде слишком малы, даже с учётом вентиляционных щелей на верхней крышке корпуса. Также вторичная обмотка трансформатора, хоть и секционная и состоит из нескольких параллельно соединённых обмоток, всё равно суммарная площадь сечения получается маленькой для обеспечения такого большого тока:

Сразу после разборки был заменён мощный низкоомный резистор, так как старый весь обуглился и рассыпался. Вместо него был подобран и установлен самодельный проволочный резистор такого номинала, чтобы зарядный ток в начале зарядки не превышал 1,5 Ампер. Так же были удлинены выводы индикаторных светодиодов, так как они не доставали до отверстий в корпусе:

Далее нужно было освободить плату от корпуса и произвести зарисовку фрагмента стабилизирующего звена устройства. Делается это простым выниманием платы из нижней части и вытаскиванием вилки, которую удерживает небольшая пластмассовая защёлка. Не нужно ничего отпаивать, и на самом деле это оказалось очень удобным. Следует просто освободить защёлку, а вместе с ней и вилку, проводами припаянную к плате:

После освобождения платы и возможности её свободного вращения в руке, для осмотра и проведения анализа, можно зарисовать нужный участок схемы с указанием номиналов установленных радиоэлементов. Сверху платы сразу бросается в глаза интегральный стабилизатор TL431, от обвязки которого и зависит уровень выходного напряжения, а точнее его максимальное значение, так как под нагрузкой во время процесса зарядки выходное напряжение будет проседать из-за сопротивления последовательно установленного низкоомного шунта:

Получилось зарисовать и далее начертить фрагмент вторичной цепи преобразователя зарядного устройства после трансформатора. Схема является стандартной для большинства импульсных источников питания и подстройка уровня выходного напряжения не составит труда для радиолюбителя. Позиционные номера радиокомпонентов совпадают с маркировкой на плате:

Зелёным цветом выделены резисторы, от которых зависит напряжение стабилизации и максимальный ток зарядки. Резисторы R7 и R8 составляют делитель выходного напряжения для интегрального стабилизатора TL431, и от них зависит его уровень. Подбором резистора R8 можно менять это значение в некоторых пределах. А изначально обугленный резистор токового шунта, имеющий сопротивление 1 Ом и в последствии заменённый на резистор более высокого сопротивления, по всей видимости предназначен для ограничения выходного тока, а так же служит датчиком для системы определения и индикации процесса зарядки, которая в данном случае нас не интересует.

На сайте «Паяльник» имеется калькулятор для расчёта сопротивления резисторов делителя стабилизатора TL431 «TL431 калькулятор». Введя исходные данные можно легко и просто определить нужные сопротивления под определённые характеристики. Нам в данном случае легче подобрать одно из плеч делителя, а именно резистор R8, составляющий верхнее плечо и в оригинале имеющий сопротивление 23,2 кОм. Пересчитав данные калькулятором под выходное напряжение 13,8 Вольт получается значение сопротивления указанного резистора 21,3 кОм:

Но вместо того, что бы менять установленный на плате резистор, Мы поступим по другому, и к уже имеющемуся резистору параллельно установим резистор такого сопротивления, что-бы общее сопротивление двух параллельно установленных резисторов было равно необходимому, ранее рассчитанному, сопротивлению верхнего плеча. Для расчёта общего сопротивления параллельно соединённых резисторов на сайте так же имеется удобный калькулятор «Параллельное соединение резисторов». Подставив одно, имеющееся значение, и подбирая другое можно определить каким должно быть сопротивление второго, параллельно устанавливаемого резистора, для получения необходимой величины. В нашем случае это значение составило 270 кОм:

На подкорректированной схеме красным цветом отмечены внесённые изменения. Как уже ранее упоминалось, резистор шунта Мы установили с сопротивлением в два Ом, а добавленный новый резистор на 270 кОм обозначен на схеме как R new:

На самой плате устройства параллельно резистору R8 был припаян резистор с гибкими выводами на сопротивление 270 кОм, а места пайки и вся плата были тщательно зачищены спиртом:

После доработки и подключения к сети выходное напряжение без нагрузки составило 13,7 Вольт, что является в пределах нормы максимального напряжения буферного режима зарядки свинцовых аккумуляторных батарей с рабочим напряжением в 12 Вольт:

Рекомендованный зарядный ток такого режима в процессе зарядки не должен превышать 20-30% от значения ёмкости аккумулятора, и в данном случае составил примерно 1 Ампер:

В конце зарядки зажигается зелёный светодиод и зарядный ток падает до 0,1 Ампер. В таком состоянии аккумулятор можно оставить без присмотра, не опасаясь что произойдёт перезаряд и закипание электролита:

Доработка оказалась несложной и в любой момент можно вернуть прежние параметры просто отпаяв добавленный резистор. В процессе эксплуатации и продолжительной работы зарядного устройства было замечено значительное снижение температуры корпуса по сравнению с предыдущим вариантом, а весь процесс зарядки занимал примерно 8 часов. На информационной наклейке красным маркером были замазаны выходные параметры, которые уже не актуальны, а при надобности маркер легко можно стереть спиртом:

В следующих статьях будет рассмотрен многофункциональный измерительный прибор для мониторинга параметров заряда/разряда аккумуляторов и переделка обычного двенадцативольтного импульсного блока питания под зарядное устройство для литий-ионных аккумуляторных батарей с добавлением в схему узла стабилизации зарядного тока и индикатора зарядки.

Многофункциональный измеритель параметров заряда/разряда аккумуляторов

Как она работает? И в чем её польза?

Работает в системе отопления по следующей схеме: котёл греет теплоноситель (чаще всего воду) в буферной емкости, в которой она аккумулируется. Насос подаёт горячую воду из верхней части буферной ёмкости к радиаторам. Такой же объём воды (остывшей) возвращается в нижнюю часть буферной ёмкости. К насосу можно подключить комнатный термостат, который будет включать-выключать его в зависимости от температуры в доме.

Прим.: буферная ёмкость – это же теплоаккумулятор (более точное название), аккумулирующий бак (не путать с бочкой), аккумуляционная емкость (не путать с конденсатором), буфер (не путать с обменом), аккумулирующая ёмкость (не путать с аккумулятором), накопительная ёмкость (не путать с септиком канализации)

Если температура в буферной емкости упадёт, значит нужно снова топить котёл? Да, но как быстро она упадёт? В случае системы без буферной ёмкости температура начинает падать сразу и это падение начинает ощущаться человеком через 0,5-3 часа (в зависимости от температуры на улице, утепления дома и т.п.). в схеме же с буферной емкостью увеличивается количество воды в системе(в зависимости от объема буфера от 500 литров до 2000 и более). Соответственно и остынет этот объём воды в несколько раз медленнее. Вот и получится, что похолодание после остановки котла вы почувствуете не через 0,5-3 часа, а примерно через 6 – 24 часа. Вот реальная польза и экономия. То самое время, которое Вы можете не топить котёл.

Огромная польза от накопительной емкости заключается в обеспечении дополнительной безопасности системы. Если говорить простым языком, буферная емкость защищает твердотопливный котел и всю систему от перегрева в момент отключения электроэнергии. Так как дрова в твердотопливном котле не могут в миг перестать гореть, а циркуляции воды не происходит, то котел переходит в аварийный режим. Если пропадает электричество и циркуляционные насосы не работают, то при определенном монтаже (подключение буфера по естественной циркуляции к твердотопливному котлу), бак принимает излишнюю тепловую энергию на себя, и в системе не происходит аварийной ситуации.

Конечно, такой вариант отопления ,как твердотопливный котел и буферная емкость-наиболее затратный учитывая стоимость монтажа и дополнительного материала не только для котла ,но и для буфера. Не мало важным так же является площадь котельной-возможность установки появляется на 8 м2 и с высотой потолка-2,5 м. Внимание! Только правильный монтаж обеспечит Вам безопасность ,удобство и экономичность.

Принцип расчета объема буферной емкости

Есть различные методики расчета рекомендуемого объема, но исходя из практики наиболее верным будет не менее 20-30 литров на 1 кВт мощности твердотопливного котла. Выходит, что чем мощнее котел, тем больше объем буфера.

Таким образом, единожды потратив пусть не малую сумму на оборудование в топочной, вы получите полноценную, экономичную и безопасную систему, ежедневно сохраняющую не копейку, а рубль в вашем кошельке … или кредитке.

P.S. Если к нам обращается заказчик с просьбой приобрести и смонтировать твердотопливный котел, мы всегда предлагаем ему схему с буферной емкостью, на которую готовы сделать хорошую скидку, дабы клиент остался доволен.

Буферные емкости в каталоге + Монтаж теплоаккумуляторов — буферов тепла

Источник

Читайте также:  Аккумуляторы автомобильные что означают цифры
Оцените статью