- Принцип работы контроллера аккумулятора
- Как выглядит контроллер аккумулятора?
- Как работает контроллер аккумулятора?
- Причины блокировки аккумулятора контроллером
- Контроллер заряда АКБ – что это и для чего он нужен?
- Что такое контроллер заряда аккумулятора
- Функции
- Виды контроллеров
- Приборы On/Off
- Гибридные устройства
- Способы подключения
- Советы специалистов
Принцип работы контроллера аккумулятора
Статья обновлена: 2021-06-11
Контроллер Li-ion аккумулятора или батареи – это электронная плата, которая контролирует работу АКБ и не допускает опасных ситуаций при ее эксплуатации. Это краткий ответ на вопрос, что такое контроллер батареи. Чаще всего его называют BMS платой – от словосочетания Battery Management System.
Ее основные компоненты – это резисторы, MOSFET-транзисторы, накопительный конденсатор и микросхема защиты. Они оберегают батарею от неполадок по цепи питания, не допускают критических отклонений рабочих параметров и преждевременного выхода из строя.
Как выглядит контроллер аккумулятора?
Внешний вид контроллера зависит от типа элементов питания, для которых он предназначен. Например, для защиты Li-ion аккумуляторов популярного типоразмера 18650 используются миниатюрные платы, которые привариваются с помощью сварочной ленты к одному из контактов. В результате незащищенный аккум становится защищенным, его диаметр увеличивается на доли миллиметра, а длина – на 2–3 мм.
Аккумуляторные батареи всегда собираются из незащищенных элементов, а затем оснащаются платой защиты. Она выбирается в зависимости от схемы сборки батареи и необходимых функций. Контроллеры для Li-ion батарей бывают с балансировкой и без нее, разного функционала, рассчитанные на определенные рабочие характеристики и разное количество последовательно соединенных элементов в сборке: 3S, 4S, …, 20S и т.д.
Как работает контроллер аккумулятора?
Принцип работы контроллера батареи заключается в поддержании рабочих параметров в допустимых диапазонах. BMS плата контролирует работу АКБ сразу по нескольким параметрам:
- По напряжению – она не допускает критического снижения напряжения (глубокого разряда аккумуляторов) и перезаряда аккумуляторов. Когда напряжение достигает критического минимума или максимума, контроллер отключает батарею от нагрузки или зарядного устройства. Для большинства литий-ионных аккумуляторов рабочее напряжение должно поддерживаться в диапазоне от 2,5 В в разряженном состоянии до 4,25 В в заряженном. В
зависимости от типа аккумулятора, эти значения могут быть другими. В любом случае задача BMS платы – не допустить выхода напряжения за границы, установленные для конкретного типа АКБ. Тем самым контроллер оберегает элементы питания от деградации, потери емкости, вздутия, перегрева, риска возгорания и взрыва.
- По току – контроллер отключает АКБ от нагрузки, если ток разряда превышает допустимые значения. Уровень токоотдачи у разных Li-ion аккумуляторов может составлять от 1С до 25С. И если в условиях, где нужны высокотоковые аккумуляторы, использовать обычные модели, они быстро придут в негодность. Контроллер защиты не допустит этого и просто отключит АКБ, если она не рассчитана на такие нагрузки. Также он защищает аккумуляторы от короткого замыкания.
- По температуре – функция контроля температуры предусмотрена не во всех аккумуляторных контроллерах, но она важна для защиты АКБ от перегрева. Поэтому в схемы многофункциональных BMS плат обязательно входит терморезистор.
Некоторые BMS платы кроме основных функций умеют выполнять балансировку ячеек в аккумуляторной батарее – выравнивать напряжение всех аккумуляторов в сборке. Это помогает избежать несоответствий по уровню заряда и продлить срок службы батареи.
Причины блокировки аккумулятора контроллером
Если контроллер блокирует работу аккумулятора, причина может заключаться в следующем:
- короткое замыкание внутри элемента питания;
- глубокий разряд – критическое падение напряжения на ячейках.
Разрядившуюся батарею нужно скорее поставить на зарядку. Если же хранить ее в таком состоянии, дальнейший саморазряд приведет к полному разряду, и зарядить АКБ не получится. Контроллер в целях безопасности просто не позволит запустить процесс зарядки.
Это объясняется тем, что при хранении разряженных аккумуляторов в их структуре происходят необратимые процессы деградации, образуются кристаллы лития, возникает опасный контакт между полюсами и опасность взрыва. Задача контроллера – не допустить подобных последствий, поэтому он блокирует дальнейшее использование аккумуляторов с напряжением, упавшим ниже критического минимума.
Источник
Контроллер заряда АКБ – что это и для чего он нужен?
Контроллер заряда аккумулятора — это плата, которая защищает элемент питания от скачков напряжения, перезарядки или “глубокой разрядки”. Расскажем об особенностях таких устройств, их видах и способах подключения.
Что такое контроллер заряда аккумулятора
Контроллер заряда работает по разным принципам, что завит от типа батареи, к которой он подключен. В мобильных телефонах, смартфонах, планшетах, ноутбуках используют BMS-плату (микросхему) с распаянными электронными элементами на литий-ионном аккумуляторе. Если исключить плату защиты из цепи, то АКБ быстрее выйдет из строя или взорвется из-за нарушений правил эксплуатации.
В ветрогенераторах используют электронные блоки. Внешние контроллеры подключают к солнечным батареям. Последние выбирают исходя от типа аккумуляторов для накопления электрической энергии. Последние, зачастую представлены в свинцово-кислотном исполнении.
Функции
Контролеры созданы для:
- Наблюдения за процессом зарядки. При восстановлении емкости от 0 до 10% работает предварительное накопление емкости. От 10 до 70-80% происходит увеличение скорости наполнения постоянным током. Дозарядка проходит медленнее, из-за увеличившегося сопротивления в цепи.
- Регулировки просадок. Защищает электрическую цепь от короткого замыкания, просадок напряжения.
- Блокировки перезаряда. У каждой батареи есть лимит максимального напряжения (у Li-Ion он составляет около 4,2 В). Достигнув указанной цифры, питание автоматически отключается, препятствуя вздутию и взрыву АКБ.
- Защиты от глубокой разрядки. Если напряжение аккумулятора падает ниже критического значения (3 В в Li-Ion), происходит потеря номинальной емкости, уменьшается время автономной работы.
- Балансировки. Следит за равномерной зарядкой всех звеньев электросхемы, увеличивая срок службы элемента питания.
- Наблюдения за температурой. При перегреве или переохлаждении срабатывает терморезистор, который отключает питание, поданное на батарею.
Все параметры задают микросхеме или контролеру на этапе производства.
Виды контроллеров
Принцип зарядки батареи зависит от установленного оборудования. Нижеперечисленные контроллеры используют для солнечных батарей, аналогичные устройства применяют и в других сферах восполняемого электричества.
Приборы On/Off
Устройство начального сегмента, которое отключает подачу питания после достижения аккумулятором максимального напряжения. Это защищает батарею от перегрева, перезарядки.
Срабатывает “защита”, когда восстановлено 70-85% емкости — пик напряжения. Далее, ток должен уменьшиться и зарядить АКБ до 100% за 1-3 часа, но этого не происходит из-за особенностей прибора. Как итог, постоянная недозарядка уменьшает срок эксплуатации и емкость аккумулятора.
Контроллер носит второе название ШИМ и работает по принципу широтно-импульсной модуляции тока. По аналогии с печатной платой в смартфонах, где установлены литейно-ионные источники питания, устройство понижает входящее напряжение по достижению его пика и доводит зарядку до 100%.
Стоит устройство выше предыдущего варианта, но позволяет сохранить “резервуары для энергии”.
В прибор заложены алгоритмы для замеров тока и напряжения системы энергоснабжения и определения оптимального соотношения параметров для стабильной работы подключенной станции.
Согласно статистике, MPPT на 35% продуктивнее распределяют энергию, полученную с внешнего источника питания, нежели PWM-варианты. Учитывая стоимость девайса, его принято использовать для автоматизации “солнечных ферм”. Из-за сниженной стоимости, в частных домах практичнее использовать ШИМ.
Гибридные устройства
Такие контроллеры совмещают особенности PWM и MPPT. Их используют для распределения энергии, полученной с ветрогенераторов, которые совмещают с солнечными панелями. Главным отличием от обычных моделей являются вольтамперные параметры.
Способы подключения
Подключение завит от типа устройства.
Специально для пользователей, рядом с клеммами есть обозначения, что к ним подключать. Необходимо учесть строгую последовательность:
1. Подключите аккумулятор.
2. Включите предохранитель на плате, рядом с «+».
3. Вставьте контакты солнечных батарей.
4. Подсоедините контрольную лампу с напряжением 12 или 24 В.
Подключение заметно отличается от ШИМ:
- Солнечную панель подключают к инвертору.
- От него плюс заводят в прибор. На минусовой кабель ставят предохранитель.
- Ко второму плюсу и минусу подключают АКБ с использованием предохранителей.
- Инвертор и контроллер подключают к заземлению.
Последовательность и тип подключения будет незначительно отличаться:
- Переведите клеммы в неактивное положение.
- Достаньте предохранители.
- Подсоедините батареи.
- Подключите солнечные батареи.
- Позаботьтесь о заземлении.
- Добавьте в цепь датчик температуры.
- Верните предохранители, активируйте клеммы.
Советы специалистов
Выбор контроллера зависит от сценария использования, напряжения батарей и химического состава АКБ. При ограниченном бюджете делают ставку на PWM. Для поддержания солнечной фермы используют MPPT.
Контроллером заряда аккумулятора снабжают любые источника питания, защищая их от перегрева, перезаряда, недозаряда и потери емкости. Приборы бывают интегрированными или внешними. Последние используют при получении энергии от солнечных панелей или ветряных установок, дополнительно задействуя инвертор.
Источник