- Использовал контроллер с аккумулятором
- Модули защиты и контроллеры заряд/разряд для Li-ion аккумуляторов
- Контроллеры заряда-разряда
- DW01-Plus
- S-8241 Series
- AAT8660 Series
- FS326 Series
- LV51140T
- R5421N Series
- SA57608
- LC05111CMT
- Контроллеры заряда и схемы защиты — в чем разница?
- Контроллер зарядки литий─ионного аккумулятора
- Для чего нужен контроллёр зарядки?
- Схемы контроллеров заряда-разряда
- Контроллеры заряда-разряда
- DW01-Plus
- S-8241 Series
- AAT8660 Series
- FS326 Series
- LV51140T
- R5421N Series
- Защита литий-ионных аккумуляторов
- Восстановление литий ионных аккумуляторов
- Особенности литий-ионных аккумуляторов
- Почему контроллер блокирует работу литиевых батарей
- Методы восстановления литий-ионных аккумуляторов
- Способ №1
- Способ №2
- Обзор платы защиты
- Как заменить свинцовый аккумулятор литий-ионным
- Выбор контроллера
- Новая электрическая схема LED фонаря
- Сборка фонаря на литий-ионном аккумуляторе
- О встроенной схеме защиты в Li-ion аккумуляторах
- Как восстановить Li-ion аккумулятор
- Заключение
- Особенности конртроллёров
Использовал контроллер с аккумулятором
У меня на балконе швейная машинка мощностью 220v 450w, по вечерам шью 1-2 часа.
В один прекрасный день, мне видимо перегрело голову солнечной энергией и я загорелся использовать её для своей машинки. )
Полез на таобао и заказал себе солнечную панель 100w 12v, инвертор 2500w, литий ионный аккумулятор 12w100a и такой контроллер:
После того как мне пришёл весь комплект меня смутила эта надпись на контроллере: Max.PV Input Power 390(12v)
И я решил пока всё отложить, подождать и заказать более дорогой и мощный контроллер.
Заказал такой:
И тут меня постигло очередное разочарование открыв инструкцию я увидел что этот контроллер не подходит для лития.
Теперь вопрос, вот так выглядит мой аккумулятор
у него на экране светится надпись KMW может ли это значить что у него есть свой встроенный контроллер заряда и мне можно подключить напрямую солнечную панель и инвертор?
Надеюсь написал в нужное место и в нужный форум, буду рад любому обсуждению моей проблемы.
Если мои контроллеры мне не подходят готов поменять их на литий ионный с доплатой если надо будет.
Добрый день, homsys!
Мне неизвестны ни эти модели контроллеров ни данная модель АКБ. Желательно видеть инструкции, а не картинки )
Контроллеры,скорее всего, оба не подойдут. Трудно судить по картинкам, нужна инструкция. Но если по картинкам, это обычные, скорее всего PWM, контроллеры для свинцово-кислотных батарей, и, даже неизвестно, какого именно типа свинцово-кислотных батарей.
Контроллер для литиевых АКБ должен быть с настраиваевыми зарядными характеристиками, в инструкции контроллера в разделе «тип АКБ» или «выбор типа АКБ» должно быть написано, что возможны пользовательские настройки, т.к. литиевые АКБ могут иметь разные номинальные напряжения и разные зарядные характеристики. То что у вашей АКБ формальный номинал 12 В не означает, что ее можно заряжать контроллером для свинцово-кислотных АКБ. Скорее всего, при заряде обычным контролером произойдет превышение зарядного напряжения, что приведет к выходу АКБ из строя. Для настроек контроллера надо знать зарядные характеристики конкретного литиевого аккумулятора.
Зря Вас смутила эта надпись.
Что означает эта характеристика: 390 Вт — это предельная мощность солнечной панели, которую можно подключать к данному контроллеру при напряжении АКБ 12 В.
У Вас панель 100 Вт, и для нее более чем достаточно контроллера с допустимой входной мощностью 390 Вт.
Про АКБ — что означает абревиатура KMW мне неизвестно, нет смысла гадать. Характеристики АКБ на китайском не очевидны.
Судя по надписи на корпусе — АКБ 12 В и, скорее всего, емкостью 100 А*ч, но смушает что написано 100 А, а не 100 А*ч.
Скорее всего 12.6 В — предельное зарядное напряжение, 9.5 В — нижняя граница допустимого напряжение. Эти характеристики не сответствуют стандартным настройкам контроллеров для свинцово-кислотных АКБ. Но это догадки. Китайский я не знаю.
Источник
Модули защиты и контроллеры заряд/разряд для Li-ion аккумуляторов
Для начала нужно определиться с терминологией.
Как таковых контроллеров разряда-заряда не существует. Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки — сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде — это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют защиту от глубокого разряда.
При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого зарядного устройства для литиевого аккумулятора.
Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:
И вот тоже они:
Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).
Контроллеры заряда-разряда
Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).
DW01-Plus
Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.
Сама микросхема DW01 — шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.
Вывод 1 и 3 — это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 — датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.
Паразитные диоды, встроенные в полевики, позволяют осуществлять заряд аккумулятора, даже если сработала защита от глубокого разряда. И, наоборот, через них идет ток разряда, даже в случае закрытого при перезаряде транзистора FET2.
Вся схема выглядит примерно вот так:
Правая микросхема с маркировкой 8205А — это и есть полевые транзисторы, выполняющие в схеме роль ключей.
S-8241 Series
Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241.
Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.
AAT8660 Series
Решение от Advanced Analog Technology — AAT8660 Series.
Пороговые напряжения составляют 2.5 и 4.32 Вольта. Потребление в заблокированном состоянии не превышает 100 нА. Микросхема выпускается в корпусе SOT26 (3х2 мм, 6 выводов).
FS326 Series
Очередная микросхема, используемая в платах защиты одной банки литий-ионного и полимерного аккумулятора — FS326.
В зависимости от буквенного индекса напряжение включения защиты от переразряда составляет от 2.3 до 2.5 Вольт. А верхнее пороговое напряжение, соответственно, — от 4.3 до 4.35В. Подробности смотрите в даташите.
LV51140T
Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T.
Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы — вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.
R5421N Series
Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки — порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).
Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:
Обозначение | Порог отключения по перезаряду, В | Гистерезис порога перезаряда, мВ | Порог отключения по переразряду, В | Порог включения перегрузки по току, мВ |
---|---|---|---|---|
R5421N111C | 4.250±0.025 | 200 | 2.50±0.013 | 200±30 |
R5421N112C | 4.350±0.025 | |||
R5421N151F | 4.250±0.025 | |||
R5421N152F | 4.350±0.025 |
SA57608
Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608.
Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:
Обозначение | Порог отключения по перезаряду, В | Гистерезис порога перезаряда, мВ | Порог отключения по переразряду, В | Порог включения перегрузки по току, мВ |
---|---|---|---|---|
SA57608Y | 4.350±0.050 | 180 | 2.30±0.070 | 150±30 |
SA57608B | 4.280±0.025 | 180 | 2.30±0.058 | 75±30 |
SA57608C | 4.295±0.025 | 150 | 2.30±0.058 | 200±30 |
SA57608D | 4.350±0.050 | 180 | 2.30±0.070 | 200±30 |
SA57608E | 4.275±0.025 | 200 | 2.30±0.058 | 100±30 |
SA57608G | 4.280±0.025 | 200 | 2.30±0.058 | 100±30 |
SA57608 потребляет достаточно большой ток в спящем режиме — порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).
LC05111CMT
Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor — контроллер заряда-разряда на микросхеме LC05111CMT.
Решение интересно тем, что ключевые MOSFET’ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.
Переходное сопротивление встроенных транзисторов составляет
11 миллиом (0.011 Ом). Максимальный ток заряда/разряда — 10А. Максимальное напряжение между выводами S1 и S2 — 24 Вольта (это важно при объединении аккумуляторов в батареи).
Микросхема выпускается в корпусе WDFN6 2.6×4.0, 0.65P, Dual Flag.
Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.
Контроллеры заряда и схемы защиты — в чем разница?
Важно понимать, что модуль защиты и контроллеры заряда — это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.
Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV — постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество «заливаемой» в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.
По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.
Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу — при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.
Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (
4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.
Источник
Контроллер зарядки литий─ионного аккумулятора
Простейший вариант контроллера заряда-разряда литий-ионных АКБ можно увидеть, если разобрать аккумулятор планшетного компьютера или телефона. Он состоит из банки (аккумуляторного элемента) и печатной платы защиты BMS (Battery Monitoring System). Это и есть контроллер заряда-разряда, который можно видеть на фото ниже.
Для чего нужен контроллёр зарядки?
Назначение контроллера в том, что он следит за тем, чтобы банка не заряжалась выше напряжения 4,2 вольта. Литиевый аккумуляторный элемент имеет номинальное напряжение 3,7 вольта. Перезаряд и превышение напряжения выше 4,2 вольта могут привести к тому, что элемент выйдет из строя.
Также контроллер следит за процессом разрядки аккумуляторного элемента. При падении напряжения ниже порогового (обычно 3 вольта) схема отключает банку от потребителя тока. В результате устройство, работающее от аккумулятора, просто выключается. Среди прочих функций контроллера зарядки стоит отметить защиту от короткого замыкания.
На некоторых платах защиты BMS устанавливается терморезистор для защиты аккумуляторного элемента от перегрева.Контроллер, рассмотренный выше, является простейшим вариантом защиты BMS. На самом деле разновидностей таких плат гораздо больше и есть довольно сложные и дорогостоящие.
Почти все такие и похожие платы отвечают только за три вещи:
- 1.Контроль переразряда батареи
- 2. Контроль перезаряда батареи
- 3. Защита от превышения тока нагрузки.
Иногда плата может контролировать температуру батареи. В нашем магазине Эсма вы можете приобрести несколько разновидностей подобных контроллеров, а также литиевые элементы, контактные площадки для сборки элементов в батареи и термоусадку к ним.
Используя подобные контроллеры, при достаточной квалификации, вы можете переделать старые Ni-Cd или Ni-Mh аккумуляторы шуруповертов, дрелей, р/станций и др. электронных устройств на современные, более легкие и долговечные литиевые батареи.
Стоит отметить что прежние зарядные устройства без дополнительных работ использовать нельзя!
Рассмотрим некоторые контроллеры, продаваемые в магазине Эсма города Магнитогорска.
HX-3S-A02 цена 170р
HX-3S-A02 Прилагается вариант схемы подключения.
Удачная разработка китайцев, плата (модуль) HX-3S-A02 (3A) на основе чипа (контроллера) S-8254AA, выполняет функцию защиты заряда-разряда LI-ION элементов типа 18650.
Обеспечивает защиту от перезаряда, защиту от переразряда, защиту от короткого замыкания. Позволяет подключить три аккумулятора типа 18650 с максимальным током разряда до 10A. Размер платы 50х16 мм
FDC-2S-2 цена 50р
Плата (модуль) FDC-2S-2 (HX-2S-02) на основе чипа HY2120, выполняет функцию защиты LI-ION элементов типа 18650. Обеспечивает защиту от перезаряда, защиту от переразряда, защиту от короткого замыкания. Позволяет подключить два аккумулятора типа 18650 с максимальным током разряда до 3A. Размер платы 36x6x1 мм. Прилагается вариант схемы подключения.
HX-2S-01 цена 60р
HX-2S-01 Плата (модуль) на основе чипа HY2120, выполняет функцию защиты LI-ION элементов типа 18650. Обеспечивает защиту от перезаряда, защиту от переразряда, защиту от короткого замыкания. Позволяет подключить два аккумулятора типа 18650 с максимальным током разряда до 3A
HX-3S-D01 цена 220р
HX-3S-D01. Плата (модуль) на основе чипа (контроллера) S-8254AA, выполняет функцию защиты заряда-разряда LI-ION элементов типа 18650. Обеспечивает защиту от перезаряда, защиту от переразряда, защиту от короткого замыкания. Позволяет подключить три аккумулятора типа 18650 с максимальным током разряда до 20A. Размер платы 51х23 мм.
HX-3S-D02 цена 200р
Плата (модуль) HX-3S-D02 на основе чипа (контроллера) S-8254AA, выполняет функцию защиты заряда-разряда LI-ION элементов типа 18650. Обеспечивает защиту от перезаряда, защиту от переразряда, защиту от короткого замыкания. Позволяет подключить три аккумулятора типа 18650 с максимальным током разряда до 10A. Размер платы 50х16 мм. Прилагается вариант схемы подключения.
HX-4S-A01 цена 200р
Прилагается вариант схемы подключения. Плата (модуль) HX-4S-A01 (6A) на основе чипа (контроллера) S-8254AA, выполняет функцию защиты заряда-разряда LI-ION элементов типа 18650. Обеспечивает защиту от перезаряда, защиту от переразряда, защиту от короткого замыкания. Позволяет подключить четыре аккумулятора типа 18650 с максимальным током разряда до 6A. Размер платы 67х16 мм.
Теперь мы знаем, что контроллер заряда Li-Ion-аккумулятора играет важную роль в обеспечении длительности работоспособности мобильных устройств и позитивно сказывается на сроке их службы.
Благодаря простоте производства их можно найти практически в любом телефоне или планшете.
Если будет желание собственными глазами увидеть, а руками потрогать контроллер заряда Li-Ion-аккумулятора и его содержимое, то при разборе следует помнить, что работа ведётся с химическим элементом, поэтому следует соблюдать определённую осторожность.
Схемы контроллеров заряда-разряда
Для начала нужно определиться с терминологией.
Как таковых контроллеров разряда-заряда не существует. Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки — сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде — это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют защиту от глубокого разряда.
При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого зарядного устройства для литиевого аккумулятора.
Исходя из своего опыта могу сказать, что под контроллером заряда/разряда на самом деле понимают схему защиты аккумулятора от слишком глубокого разряда и, наоборот, перезаряда.
Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:
Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).
Контроллеры заряда-разряда
Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).
DW01-Plus
Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.
Сама микросхема DW01 — шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.
Вывод 1 и 3 — это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта.
Вывод 2 — датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току.
Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.
Паразитные диоды, встроенные в полевики, позволяют осуществлять заряд аккумулятора, даже если сработала защита от глубокого разряда. И, наоборот, через них идет ток разряда, даже в случае закрытого при перезаряде транзистора FET2.
Вся схема выглядит примерно вот так:
Правая микросхема с маркировкой 8205А — это и есть полевые транзисторы, выполняющие в схеме роль ключей.
S-8241 Series
Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241.
Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.
AAT8660 Series
Решение от Advanced Analog Technology — AAT8660 Series.
Пороговые напряжения составляют 2.5 и 4.32 Вольта. Потребление в заблокированном состоянии не превышает 100 нА. Микросхема выпускается в корпусе SOT26 (3х2 мм, 6 выводов).
FS326 Series
Очередная микросхема, используемая в платах защиты одной банки литий-ионного и полимерного аккумулятора — FS326.
В зависимости от буквенного индекса напряжение включения защиты от переразряда составляет от 2.3 до 2.5 Вольт. А верхнее пороговое напряжение, соответственно, — от 4.3 до 4.35В. Подробности смотрите в даташите.
LV51140T
Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T.
Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы — вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.
R5421N Series
Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки — порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).
Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:
ОбозначениеПорог отключения по перезаряду, ВГистерезис порога перезаряда, мВПорог отключения по переразряду, ВПорог включения перегрузки по току, мВ
R5421N111C | 4.250±0.025 | 200 |
Защита литий-ионных аккумуляторов
Защита литий-ионных аккумуляторов (Li-ion). Я думаю, что многие из вас знают, что, например, внутри аккумулятора от мобильного телефона имеется ещё и схема защиты (контроллер защиты), которая следит за тем, чтобы аккумулятор (ячейка, банка, итд…) не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В.
Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания. Когда аккумулятор исчерпывает свой срок службы, из него можно достать плату контроллера защиты, а сам аккумулятор выбросить.
Плата защиты может пригодиться для ремонта другого аккумулятора, для защиты банки (у которой нету схем защиты), либо же просто можно подключить плату к блоку питания, и поэкспериментировать с ней.
У меня имелось много плат защиты от пришедших в негодность аккумуляторов. Но поиск в инете по маркировкам микросхем ничего не давал, словно микросхемы засекречены.
В инете находилась документация только на сборки полевых транзисторов, которые имеются в составе плат защиты. Давайте посмотрим на устройство типичной схемы защиты литий-ионного аккумулятора.
Ниже представлена плата контроллера защиты, собранная на микросхеме контроллера с обозначением VC87, и транзисторной сборке 8814 (даташит тут):
На фото мы видим: 1 — контроллер защиты (сердце всей схемы), 2 — сборка из двух полевых транзисторов (о них напишу ниже), 3 — резистор задающий ток срабатывания защиты (например при КЗ), 4 — конденсатор по питанию, 5 — резистор (на питание микросхемы-контроллера), 6 – терморезистор (стоит на некоторых платах, для контроля температуры аккумулятора).
Вот ещё один вариант контроллера (на этой плате терморезистор отсутствует), собран он на микросхеме с обозначением G2JH, и на транзисторной сборке 8205A (даташит тут):
Два полевых транзистора нужны для того, чтобы можно было отдельно управлять защитой при заряде (Charge) и защитой при разряде (Discharge) аккумулятора. Даташиты на транзисторы находились практически всегда, а вот на микросхемы контроллеров – ни в какую!! И на днях вдруг я наткнулся на один интересный даташит на какой-то контроллер защиты литий-ионного аккумулятора (даташит тут).
И тут, откуда не возьмись, явилось чудо — сравнив схему из даташита со своими платами защиты, я понял: Схемы совпадают, это одно и то же, микросхемы-клоны! Прочитав даташит, можно применять подобные контроллеры в своих самоделках, а поменяв номинал резистора, можно увеличить допустимый ток, который может отдать контроллер до срабатывания защиты.
Восстановление литий ионных аккумуляторов
Литий-ионные аккумуляторы — разновидность самых долговечных и надежных источников питания, которые помогают нам буквально везде: в нотбуках, смартфонах, планшетах и другой бытовой технике, необходимой нам ежедневно.
Срок службы таких батарей гораздо дольше, чем у их предшественников — никель-кадмиевых и никель-металлгидридных аналогов. Однако рано или поздно может возникнуть ситуация, когда и литий-ионные АКБ тоже могут потерять былую емкость. В связи с этим, возникает вопрос, возможно ли восстановление литий-ионных аккумуляторов.
Особенно актуален ответ на него в том случае, когда по той или иной причине в ближайшее время замену на новые осуществить невозможно.
Особенности литий-ионных аккумуляторов
Прежде чем переходить к разговору о том, возможно ли восстановить такой тип батарей, следует ознакомиться с определенными особенностями их внутреннего устройства. Как и любая АКБ, Li ion аккумулятор превращает химическую энергию в электрическую, благодаря чему становится возможной подача тока для работы того или иного бытового устройства.
Кроме электролита любая литий-ионная батарея снабжена специальной защитной платой, главная задача которой — контролировать уровень нагрева АБК и циклы заряда-разряда.
Если батарея перегрелась, контроллер автоматически прекратит ее работу.
Также, если напряжение внутри неиспользуемого Ion аккумулятора 18650 упадет ниже 2,7 вольт, система сработает так, что АКБ прекратит свое функционирование.
Такая защитная плата установлена внутри литий-ионных батарей по причине их высокой взрывоопасности. Если батарейки использовать правильно, то никаких неприятных вещей не произойдет, потому что технически они рассчитаны на большое количество «заряд-разрядных» циклов.
Следует иметь в виду, что если литиевую батарею долго не использовать, после глубокого разряда восстанавливать ее будет довольно проблематично: в таких случаях, она сама по себе разряжается через два-три года.
Восстановление литий-ионных аккумуляторов можно попытаться сделать, но долго они после этого проработать не смогут.
Однако любителям электроники известны довольно интересные способы «реанимирования» таких аккумуляторов, несмотря на проблематичность самого процесса — хотя бы по причине установленной внутри защитной платы, с которой так и так придется столкнуться, если появится желание ненадолго «поднять» емкость литий-ионной АКБ.
Почему контроллер блокирует работу литиевых батарей
Одна из причин — короткое замыкание, которое возникает при превышении допустимых потенциалов тока внутри АКБ. Защитная плата разрывает электрическую цепь и не восстановит ее до момента устранения КЗ. Для того чтобы разблокировать батарею, в данном случае, бывает достаточно ее подсоединения к заряднику.
Также система защиты срабатывает в том случае, если в аккумуляторе произошел глубокий разряд. Если разряд глубокий, но некритичный, зарядное устройство также может спасти батарейку. Но если она разрядилась до определенного предела, система защиты просто не даст ей «включиться» в работу — в целях обеспечения безопасности.
Химические процессы внутри нее могут протекать весьма опасным способом — с образованием внутри металлических литиевых кристаллов.
Кристаллы образуют взрывоопасный контакт между плюсовым и минусовым полюсом АКБ, и, если на такую батарейку подать напряжение, может произойти взрыв, который и предотвращает система защиты.
Методы восстановления литий-ионных аккумуляторов
Безусловно, наилучшим решением будет не противоречить контроллеру батареи, а утилизировать старый источник питания и заменить его новым. Однако, если восстановление 18650, либо другого литий-ионного аккумулятора является принципиальным и важным вопросом именно в данный момент, можно попробовать это сделать.
Способ №1
Первый, самый легкий и доступный способ — это поместить батарею в морозилку холодильника. Конечно, он вызывает улыбку, потому что выглядит забавно. Но некоторые любители электроники утверждают, что попробовать стоит.
В некоторых случаях, он срабатывает, и контроллер перестает блокировать работу аккумулятора.
Может быть, это вызвано резкой сменой температурного режима, но факт остается фактом: известны случаи временного «запуска» батареек именно таким способом.
Алгоритм действий здесь рекомендуют такой:
- положить батарею в морозильную камеру холодильника;
- оставить ее там на 30-40 минут;
- извлечь АКБ из морозилки и сразу подключить к ней зарядное устройство;
- заряжать ее минуты две-три;
- отсоединить зарядное устройство;
- пусть батарея разогреется до комнатного уровня температуры;
- продолжить зарядку.
Способ №2
Если восстановление Li-Ion аккумулятора не увенчалось успехом ни после простой зарядки, ни после манипуляций с морозильной камерой и зарядным устройством, больше ничего не остается, как попытаться вскрыть батарейку и отсоединить от нее защитную плату.
Делается это так (при подобных действиях соблюдайте максимальную осторожность):
- Измерьте напряжение на контактах батареи с помощью тестера. Если оно нулевое, следуйте дальше.
- Осторожно отсоедините систему защиты в виде платы.
- Снова замерьте показатели напряжения на выходах АКБ. Оно должно стать выше, примерно 2-2,5 В, но не больше.
- Возьмите зарядное устройство с возможностью регулирования показателей тока.
- Подключите устройство к АКБ (уже без защиты).
- Установите ток до 100 мА и напряжение 4,2 В.
- Начните процесс зарядки. Если U начнет повышаться — хорошо, значит батарея еще жива. Но следите за процессом тщательно.
- Контролируйте напряжение — оно должно быть не больше 3-3,2 В.
- Заряжайте батарею таким образом не больше 10-15 минут.
- В случае, если батарея начнет сильно нагреваться, немедленно прекращайте зарядку.
- Если же все пойдет благополучно, и батарея наберет нужные показатели тока и напряжения, заряжайте ее, как обычно. Но обязательно верните перед этим защитную плату на место.
Конечно, можно гордиться тем, что батарейку удалось хотя бы ненадолго вернуть к жизни. Однако такому восстановлению подлежат далеко не все АКБ.
Перед тем, как осуществлять какие-либо действия, никогда не помешает просто взглянуть на дату выпуска батарейки. Если ей три-четыре года, не мучайтесь и выбросите ее.
Чем больше литий-ионный аккумулятор пробыл в бездействии, тем опаснее может быть его разборка и разогрев при подключении к нему зарядного устройства.
Помните о том, что таким способом надолго оживить аккумулятор все равно не удастся. Возможно, он поработает еще некоторое время, но стоит как можно скорее позаботиться о приобретении новых литий-ионных батареек, чтобы спокойно пользоваться ими и не экспериментировать с опасным химическим составом вышедших их строя старых литиевых элементов питания.
Обзор платы защиты
Вынужден сразу оговориться, применения не будет, так как покупал их просто в довесок к заказу, чтобы сработал купон на скидку, да и просто на всякий случай, вдруг пригодятся. Хотя в конце покажу один из вариантов, где их можно применить.
Заказал довольно давно, у продавца в продаже их уже нет, стоили около 85 центов за штучку, нашел ближайший похожий лот, на него и ведет ссылка.Платки в аккуратных пакетиках, присутствует номер артикула, кроме того есть подозрение, что «ноги растут» из магазина Банггуд.Внешне выглядят очень аккуратно, все контакты подписаны.
Размеры платы довольно компактные, даже при том, что часть платы просто пустая.Длина 35мм, ширина 6.2мм.Сверху расположился контроллер, его «обвязка», и также транзисторная сборка.Снижу маркировка — ZYT240 2S 3565.Ничего по этой маркировке я не нашел, нашел только по номеру артикула.
Изначально нашел больше параметров, но так и не смог опять найти место, где нашел.напряжение: 7.2 В/8.6 Врабочий Ток: 3А (4-8A пик)цвет: Зеленыйвес: 2 гразмер 35 х 6 ммВзвешивать плату не буду, цвет и так видно, размеры указал выше, потому проверять будем все остальное :)Но для начала о самой плате.
- Как я писал выше, на плате установлен контроллер и полевой транзистор.
- 1. Контроллер, предположительно является аналогом S-8252, ссылка на даташит.
- 2. Сборка из двух N-канальных полевых транзисторов. Заявленный максимальный длительный ток при температуре 70 градусов — 5 Ампер, ссылка на даташит.
Все! Плата не умеет заряжать аккумуляторы. Причем это же касается и больших плат для установки в электроинструмент и радиоуправляемые игрушки. Платы со встроенным зарядным существуют, но встречаются так редко, что можно сказать — их нет.
Также нельзя использовать функцию аварийного отключения по переразряду как функцию заряда, это аварийная защита!Как я обещал в самом начале, покажу куда можно применить подобную плату.
Например я пару лет назад переделывал аккумуляторы радиостанций, менял никелевые аккумуляторы на литиевые. Тогда я использовал аккумуляторы с защитой, с этой платой защита не нужна.
Кстати, тогда же я делал и активный балансир и зарядное на одной плате.
На этом вроде все. Могу сказать, что плата годная, полностью работоспособна и за небольшие деньги может спасти вашу батарею 🙂
Как заменить свинцовый аккумулятор литий-ионным
В статье «Ремонт и модернизация светодиодных фонарей» подробно рассмотрен вопрос ремонта и доработки электрических схем китайских светодиодных фонарей, замены вышедшего из строя кислотного аккумулятора аналогом.
Но есть еще один вариант замены аккумулятора при ремонте фонаря – замена его литий-ионным аккумулятором от неисправных электронных устройств. Например, сотового телефона, фотоаппарата, ноутбука или шуруповерта. Подойдут также аккумуляторы, которые уже не обеспечивают необходимую продолжительность работы устройства, но еще работоспособны.
Первый литий-ионный аккумулятор был выпущен в 1991 году японской корпорацией Sony. Номинальное напряжение одного элемента аккумулятора составляет 3,7 В. Минимально-допустимое – 2,75 В.
Напряжение заряда не должно превышать 4,2 В при токе заряда от 0,1 до 1 емкости аккумулятора (С). Литий-ионные аккумуляторы практически не обладают эффектом памяти и имеют малый ток саморазряда, при комнатной температуре не более 20% за год.
На текущий момент по техническим характеристикам являются самыми лучшими.
Ранее мне пришлось ремонтировать и модернизировать LED фонарь, в котором перегорели все светодиоды. После ремонта через несколько лет работы он перестал светить по причине выхода из строя свинцового аккумулятора. Как видно на фотографии корпус его вздулся.
Так фонарь и пылился на полке, пока не вышел из строя литий-ионный аккумулятор от фотоаппарата. Анализ показал, что в аккумуляторе отказал контроллер балансировки и заряда. Два элемента аккумулятора были в хорошем техническом состоянии, которые я и решил установить в фонарь вместо кислотного аккумулятора.
Штатное зарядное устройство фонаря для зарядки литий-ионного аккумулятора не подходило, так как оно обеспечивало постоянство тока заряда с неконтролируемым напряжением. А для литий-ионного аккумулятора при зарядке необходимо обеспечить ток зарядки величиной 0,1-1С при напряжении, не превышающем 4,2 В на один элемент.
Выбор контроллера
Можно изготовить контроллер самостоятельно, но в продаже, например, на Алиэкспресс, продаются готовые по цене 0,2-0,3 цента, собранные на микросхеме TP4056 или ее аналогах (ACE4054, BL4054, CX9058, CYT5026, EC49016, MCP73831, LTC4054, LC6000, LP4054, LN5060, TP4054, SGM4054, U4054, WPM4054, IT4504, PT6102, PT6181, Y1880, VS6102, HX6001, Q7051).
На Алиэкспресс был куплен самый простой модуль контроллера, технические характеристики которого полностью удовлетворяют требованиям для зарядки литий-ионного аккумулятора, установленного в фонаре. Его внешний вид представлен на фотографии.
Контроллер собран по приведенной выше электрической схеме. Изменяя номинал резистора, идущего со второго вывода микросхемы на общий провод можно ограничить максимальный ток зарядки.
Выбор величины тока зарядки Li-ion аккумулятора определяется исходя из двух ограничений. Величина тока должна находиться в пределах 0,1-1 от емкости аккумулятора (принято обозначать буквой С). Например, для аккумулятора емкостью 600 мА×час ток не должен превышать 0,6 А.
Следовательно, нужно, чтобы номинал токозадающего резистора составил 2 кОм (на резисторе должна стоять маркировка 202). И не превышать величины тока, который способно обеспечить зарядное устройство. Для данного случая ток должен быть более 0,6 А.
Ток всегда указывается на этикетке ЗУ.
Стоит заметить, что если попутать полярность подключения аккумулятора к выходу контроллера, то чип сразу пробьется и на выводы аккумулятора начинает поступать подводимое к контроллеру напряжение, что может вывести его из строя.
После зарядки Li-ion аккумулятор от контроллера отключать не обязательно. В режиме сна или когда на контроллер не подается напряжение, он аккумулятор не разряжает.
- В данной схеме контроллера не задействована функция отключения при нагреве аккумулятора выше допустимой температуры.
- Но ее можно включить, если вывод 1 микросхемы отсоединить от общего провода и подключить к выводу датчика температуры аккумулятора (такие есть в аккумуляторах всех сотовых телефонов).
- Если есть необходимость использовать контроллер, имеющий защиту от переполюсовки при подключении аккумулятора и короткого замыкания выхода, то можно применить контроллер, изображенный на фотографии.
- В дополнение к микросхеме TP4056 установлена DW01A (схема защиты) и чип с двумя ключевыми полевыми транзисторами SF8205A. Время защиты составляет несколько минут при токе 3А. Остальные технические характеристики не изменились.
В фонаре аккумуляторы с контроллером соединяются с помощью пайки. Поэтому был выбран контроллер без схемы защиты, представленный в статье первым.
Прежде, чем приступать к работе нужно проверить работоспособность контроллера и аккумулятора.
На контроллер можно подавать напряжение без нагрузки. В таком случае на выходе устанавливается напряжение 4,2 В и на плате светит синий светодиод. Далее нужно проверить аккумулятор, подключив его к выходу контроллера и зарядив полностью. Во время зарядки будет светить красный светодиод, а когда аккумулятор зарядится – синий.
Целесообразно после зарядки провести ходовые испытания аккумулятора, подключить его вместо кислотного и посмотреть сколько времени просветит фонарь. У меня проработал 10 часов и продолжал светить. Больше не стал ждать, так как этого времени для моих задач вполне достаточно.
Новая электрическая схема LED фонаря
На следующем шаге разрабатывается новая электрическая принципиальна схема фонаря. Отрицательный провод является общим для всех узлов и аккумулятора.
- В левом положении переключателя SA1 общий его контакт соединяет аккумулятор с положительным выводом контроллера.
- При соединении среднего вывода с выводом 3 напряжение подается на плату узкого луча, а с выводом 4 на планку светодиодов рассеянного света.
- Переключатель типа тумблер SA2 служит для выбора аккумулятора, от которого будут работать светодиоды. Так как в наличии имелось два аккумулятора, то решил в фонарь установить оба.
На вопрос о допустимости параллельного включения литий-ионных аккумуляторов без специального контроллера однозначного ответа нет.
Поэтому я решил пойти проверенным путем и предусмотрел возможность подключать аккумуляторы по отдельности.
Отдельное подключение каждого аккумулятора позволило не только обеспечить их работу и зарядку в оптимальных условиях, но и в процессе эксплуатации фонаря знать сколько времени он еще проработает. Зная сколько времени хватило для работы от одного аккумулятора, будет известно, сколько еще сможет просветить фонарь.
В дополнение, если выйдет из строя один из аккумуляторов, то это не приведет к потере работоспособности фонаря. Два отдельных блока светодиодов и два аккумулятора гарантируют, что вы никогда не останетесь в темноте.
Сборка фонаря на литий-ионном аккумуляторе
Теперь все подготовлено и можно приступать к модернизации фонаря – переделке его схемы для работы с литий-ионным аккумулятором.
Сначала от переключателя отпаиваются все провода и удаляется прежняя плата зарядного устройства.
В корпусе модернизируемого фонаря имелся отсек, предназначенный для короткого сетевого шнура, который закрывается откидной планкой со светодиодами рассеянного света. В него и был выведен рычаг тумблера SA2 выбора аккумулятора.
Для фиксации аккумуляторов был использован двух сторонний скотч, в виде двух полосок. Закрепить аккумуляторы можно и с помощь силикона.
Перед закреплением аккумуляторов и платы контроллера к ним были предварительно припаяны паяльником провода требуемой длины. В связи с тем, что два аккумулятора в одной половинке корпуса фонаря удобно не размещались, установил их по одному в каждой половинке корпуса. Плата контроллера к корпусу была закреплена с помощью двух винтов с гайками М2.
При припайке проводов к выводам аккумулятору нужно соблюдать осторожность, чтобы свободные концы проводов случайно не соприкоснулись и не закоротили его выводы.
На фото показан фонарь после окончания монтажа. Осталось проверить его работу узлов и собирать.
Измерять ток зарядки включением амперметра в разрыв цепи после контроллера невозможно, так как внутреннее сопротивление прибора большое и результаты измерения будут не верными.
У меня в наличии имеется USB тестер, с помощью которого можно узнать напряжение, подаваемое с зарядного устройства, текущий ток заряд, время заряда и емкость энергии, которую принял аккумулятор.
- Тестер показал, что контроллер заряжает аккумулятор током 0,42 А. Следовательно, контроллер заряжает аккумулятор нормально.
- После сборки фонаря оказалось, что его красный корпус не пропускает свет синего цвета и узнать об окончании зарядки невозможно.
- Пришлось фонарь разобрать и в зоне расположения индикаторных светодиодов сделать щелевое отверстие.
- Теперь, когда аккумулятор зарядился, хорошо стало видно свечение светодиода синего цвета.
Для модернизации фонаря подойдет любой литий-ионный аккумулятор в независимости от материала, из которого изготовлен его положительный электрод и форм-фактора (формы и геометрических размеров). Емкость аккумулятора (выражается в А×час) тоже не имеет значения, просто чем она больше, тем дольше будет светить фонарь.
Следует заметить, что если в фонарь устанавливается аккумулятор, бывший в употреблении длительное время, то его фактическая емкость, как правило, значительно меньше, чем указано на его этикетке.
Проверить целесообразность установки старого аккумулятора в фонарь можно измеряв его емкость при зарядке, что потребует наличие измерительных приборов, хотя бы USB тестера. Или зарядить аккумулятор полностью, подключить его к плате светодиодов фонаря и проверить достаточность времени его работы.
В случае, если аккумулятор оказался недостаточным по емкости, то придется приобрести новый. Наиболее подходящим для фонаря является популярный Li-ion аккумулятор типа 18650.
О встроенной схеме защиты в Li-ion аккумуляторах
Встречаются литий-ионные аккумуляторы, в которые встроена плата схемы защиты (PCB — power control board) от короткого замыкания , перезаряда и глубокого разряда. Такая защита в обязательном порядке устанавливается в аккумуляторы дорогостоящей аппаратуры, например, сотовые телефоны, фотоаппараты, ноутбуки.
Плата защиты круглой формы может быть установлена и на торце пальчикового аккумулятора. В таком случае аккумулятор несколько длиннее и на его корпусе имеется надпись «Protected».
На фотографии показан вскрытый корпус аккумулятора сотового телефона. В нем имеется печатная плата схема защиты. При использовании для установки в фонарь аккумулятора от сотового телефона эта схема будет служить дополнительной защитой, поэтому, если она исправна, то ее удалять не следует.
Припаивать провода, соблюдая полярность, нужно к крайним контактам, рядом с которыми нанесена маркировка полярности.
Схема защиты, в отличии от контроллера, не ограничивает ток зарядки, а только защищает аккумулятор. В этом и заключается отличие этих узлов.
Как восстановить Li-ion аккумулятор
Если Li-ion аккумулятор быстро заряжается и разряжается, то значит он исчерпал свой ресурс и восстановлению не подлежит.
Если в аккумуляторе нет схемы защиты и напряжение на его выводах равно нулю, то аккумулятор тоже восстановлению не подлежит.
Если в аккумулятор встроена схема защиты и он не принимает заряд, а напряжение на его выводах равно нулю, то его можно попробовать восстановить.
Причина такого поведения может быть глубокий разряд в результате длительного хранения аккумулятора в разряженном состоянии. Если напряжение на выводах банки становится меньше 2,8 В, то система защиты расценивает это как внутреннее короткое замыкание и для безопасности блокирует возможность его зарядки.
Чтобы разобраться в причине, нужно вольтметром измерять напряжение на выводах аккумулятора. Если величина менее 2,8 В, то подать с контроллера, соблюдая полярность, напряжение 4,2 В непосредственно на выводы аккумулятора. Схему защиты от аккумулятора отключать не нужно, для нее это безопасно.
- Если ток зарядки пошел, то нужно, минут через десять, отключить контроллер от аккумулятора и опять измерять напряжение на его выводах.
- Если оно стало более 2,8 В, то попробовать зарядку через схему защиты.
- В случае, если напряжение близко к нулю и не увеличивается, то аккумулятор не исправен и дальнейшей эксплуатации не подлежит.
- Если напряжение увеличилось, но не достигло 2,8 В, то продолжить зарядку на прямую.
- Если через схему защиты аккумулятор стал заряжаться, значит она исправна. В противном случае схему нужно удалить. Для применения аккумулятора для фонаря схема защиты не обязательна.
Таким несложным способом можно протестировать LI-ion аккумулятор и в случае возможности, восстановить его работоспособность.
Заключение
Замена кислотного аккумулятора в светодиодном фонаре литий-ионным позволяет решить главный вопрос – работоспособность фонаря в течении длительного времени при редком его использовании, так как саморазряд аккумулятора не превышает 2% его емкости в месяц.
В дополнение, при наличии литий-ионного аккумулятора от любого вышедшего из строя электронного устройства, можно сэкономить и фонарь станет на много легче.
Особенности конртроллёров
Компания SiliconLake выпустила недорогой линейный контроллер для заряда литий-ионных батарей SL1051, который попался мне в зарядном устройстве электронных сигарет Pons. Там стояло целых 2 таких микросхемы — SL1051B.
Основные возможности контроллера SL1051:
- • Предназначен для устройства зарядки литий-ионного или литий-полимерного аккумулятора, состоящего из одной энергетической ячейки.
- • Точность контроля и регулировки напряжений не хуже 1%.
- • Для стадии предварительной зарядки, пользователь может изменить ток предварительного заряда.
- • Имеется стадия заряда постоянным током, ток зарядки регулируется.
- • Имеется завершающая стадия заряда постоянным напряжением.
• Во время зарядки может контролироваться температура батареи.• Есть выход для индикации состояния зарядки светодиодом (LED).• Контроллер может обнаружить аномальное состояние батареи и отключиться.
• Требуется низкое напряжение питания. Контроллер имеет низкое энергопотребление в спящем режиме. Ток утечки от батареи очень мал.
• Требуется минимальное количество внешних компонентов.
• Миниатюрный корпус MSOP8 или SOP8.
SL1051 является специальным высокоточным контроллером заряда литиевых батарей, который работает по линейному принципу. Это недорогая микросхема, идеально подходящая для дешевых портативных зарядных устройств.
Контроллер SL1051 сочетает в себе высокую точность предварительной зарядки, постоянный зарядный ток, постоянное напряжение зарядки, проверку состояния аккумулятора, контроль температуры, низкий ток утечки, когда батарея поддерживается в заряженном состоянии.
Микросхема контроллера может широко использоваться в маломощных КПК, мобильных телефонах, портативных переносных устройствах и других областях.
SL1051 управляет процессом заряда с помощью определения напряжения батареи. Различают состояния предварительной зарядки, постоянного тока зарядки, постоянного напряжения зарядки.
Когда напряжение аккумулятора меньше порогового напряжения VO(MIN), то предварительный низкий ток для зарядки аккумулятора можно регулировать с помощью внешнего резистора. Когда напряжение батареи достигает VO(MIN), контроллер переходит в состояние быстрого заряда, при этом зарядный ток также задается внешним резистором.
Когда напряжение батареи поднимается до конечного, когда заряд окончен VO(REG) (как правило 4.2V), контроллер переходит в состояние постоянного напряжения зарядки, которое определяется с точностью не хуже ±1%. В этом состоянии ток зарядки будет постепенно уменьшаться, и когда ток заряда упадет меньше порогового значения, то зарядка завершается.
После окончания зарядки контроллер будет проверять напряжение на батарее, и когда оно окажется меньше порогового значения Vo(RCH), то процесс заряда аккумулятора повторяется в следующем цикле.
В целях безопасности может использоваться контроль температуры на основе термистора, встроенного в батарею.
Вывод | Назначение |
VDD | Плюс питания. |
TS | Вход для подключения датчика контроля температуры. Входное напряжение должно быть между VTS1 и VTS2, в противном случае контроллер считает, что температура батареи превышает допустимый диапазон. |
STAT | Индикатор состояния заряда, сюда через резисторы можно подключить светодиоды для отображения состояния зарядки. Во время зарядки на выходе высокий уровень напряжения относительно GND. После завершения зарядки выход будет подтянут к GND. Когда с батареей есть проблема или температура, которую показывает TS, превышает заданный диапазон, выход переключается в состояние высокого сопротивления. |
GND | Земля, общий провод, минус питания. |
CC | Выход для управления регулирующим транзистором. Соединяется либо с базой биполярного транзистора структуры PNP, либо с затвором полевого транзистора PMOS. |
CE | Управление зарядкой. |
CS | Вход для выбора тока зарядки. Ток заряда определяется падением напряжения на резисторе — датчике тока, подключенном между между источником питания и входом регулирующего элемента (эмиттер биполярного транзистора или исток полевого). |
BATT | Вход для обнаружения батареи. |
Максимально допустимые параметры:
Параметр | Значение |
VDD | -0.3V .. +7.5V |
Температура хранения | -65°C .. 150°C |
Рассеиваемая мощность PD (TA = 25°C) | 300mW |
Температура кристалла | 150°C |
Рабочая температура TA | -40°C .. +125°C |
Защита от статического электричества (ESD HBM) | 2KV |
Электрические параметры (TA = 25°C):
Параметр | Обозначение | Условия испытаний | Min | Typ | Max | Ед. |
Рабочий ток | IDD(OPE) | 4.5V VTS2, то это означает, что температура батареи слишком высокая или слишком низкая, и процесс зарядки приостанавливается. VTS восстанавливает свой нормальный уровень между VTS1 и VTS2, когда температура батареи нормальная, и тогда зарядка продолжается.
Предположим, что для контроля температуры используется термистор с отрицательным температурным коэффициентом (NTC), и диапазон рабочих температур находится между температурами TL (низкая температура) и TH (высокая температура). Т. е. для термистора с отрицательным коэффициентом его сопротивление будет RTL > RTH. Напряжение на входе TS при низкой температуре будет равно: Соответственно для высокой температуры напряжение на выводе TS будет равно: Примем как допущение, что в первом случае для VTSL=VTS2 и напряжение VDD умножается на коэффициент k2, и для VTSH=VTS1 и напряжение VDD умножается на коэффициент k1, тогда получим следующие формулы для номиналов резисторов RT1 и RT2: Аналогично для термистора с положительным температурным коэффициентом (PTC) получится RTH > RTL, и формулы для резисторов RT1 и RT2 будут следующие: Как видно из формул, для мониторинга температуры диапазон напряжения питания не имеет значения, важны только соотношения RT1, RT2, RTH, RTL, где номиналы RTH и RTL могут быть получены из соответствующей документации на батарею или с помощью экспериментальной проверки.
Источник |