- Где в России наиболее выгодно ставить солнечные электростанции?
- Что такое солнечная инсоляция и от чего она зависит
- Выработка электроэнергии солнечными электростанциями по регионам РФ
- Территории с проблемным энергоснабжением
- Рейтинг остальных регионов России, наиболее подходящих для строительства СЭС
- Как работают солнечные батареи: принцип, устройство, материалы
- Немного истории
- Принцип работы
- Устройство
- Как подключается
- Разновидности солнечных батарей
- Преимущества и недостатки
- Как добиться максимальной эффективности
- Видео
- Современные системы независимого электроснабжения дома на солнечных батареях
- Солнечная электростанция: как это устроено
- Автономные и сетевые: в чем различие
- Какие солнечные модули лучше? Доступно о технологиях
- Чем же так хороши гетероструктурные батареи?
- Монтаж: основные моменты
- Эксплуатация: самые важные вопросы
Где в России наиболее выгодно ставить солнечные электростанции?
Ежегодный рост тарифов на электроэнергию сопровождается стабильным падением цен на альтернативную энергетику. В последние годы это впервые привело к ситуации, когда даже в России строительство солнечной электростанции часто стало выгодным вложением средств.
К сожалению, данное утверждение справедливо не для всех регионов страны, что связано с разным уровнем солнечной инсоляции. Для Мурманска на севере и Владивостока на юге он различается почти в 4 раза, что обуславливает и соответствующую разницу в себестоимости произведенной энергии. В данной статье мы попробуем разобраться, какие регионы России являются наиболее подходящими для строительства собственной СЭС.
Что такое солнечная инсоляция и от чего она зависит
Основных факторов, влияющих на количество солнечного света, падающего на поверхность земли, всего три:
- широта местности;
- климатические особенности региона;
- время года.
Из-за изменения угла падения лучей в южных широтах инсоляция выше. Существенную поправку может внести климат – работа солнечных электростанций продуктивнее там, где минимальное количество пасмурных дней. Это хорошо заметно на карте, где некоторые регионы восточной Якутии получают за год на 30-40% больше света, чем расположенные на той же широте Санкт-Петербург или Норильск.
Снижает продуктивность фотоэлектрических панелей и жара. Большинство современных кремниевых ячеек теряют 0,5% эффективности при повышении температуры на каждый градус выше 25°С.
Низкие температуры на производительность СЭС не влияют.
Последним и самым существенным фактором влияния является время года. Поскольку солнце зимой стоит низко, в декабре и январе инсоляция примерно в 5 раз меньше, чем в июне и июле. Это необходимо учитывать, если предполагается круглогодичное использование станции. В таких случаях мощность солнечной электростанции должна быть достаточной, чтобы при минимальной производительности в зимние месяцы обеспечивать нужную владельцам генерацию.
Выработка электроэнергии солнечными электростанциями по регионам РФ
Приведем примерный годовой уровень генерации для СЭС на 1 кВт для нескольких крупных городов, расположенных на разных широтах.
Очевидно, что строительство солнечной электростанции в первых пяти регионах примерно в 1,5 раза выгоднее, чем в двух последних.
Территории с проблемным энергоснабжением
На территории России существует еще один, субъективный фактор выгодности строительства СЭС. Связан он с наличием территорий, где подключение частных домов и других объектов к централизованным электросетям технически невозможно или чрезмерно дорого.
Такие изолированные районы наиболее широко распространены в северо-восточной части страны – Сибири и Дальнем Востоке. Источниками энергии в них, как правило, являются дизельные генераторы. Неудивительно, что именно Якутия на сегодняшний день является регионом с наибольшим числом СЭС в России. Хотя мощность и площадь этих солнечных электростанций не так велика, как гигантских установок на 100 мегаватт в Оренбургской области или Крыму.
Установка станций в этих местностях для производства электроэнергии финансово наиболее выгодна, поскольку установки окупаются всего за 1-2 года.
Рейтинг остальных регионов России, наиболее подходящих для строительства СЭС
Исходя из всех перечисленных факторов, рейтинг остальных регионов России, где работа солнечных электростанций окажется наиболее выгодной, выглядит следующим образом:
- Крым, Краснодарский край, Карачаево-Черкесия, Ставрополье, Калмыкия, Чечня, Дагестан на юго-западе, а также Приморский край на юго-востоке. Здесь даже небольшая солнечная электростанция из 10 панелей общей площадью 20 квадратных метров и мощностью около 3 кВт обеспечит до 4,5 МВт-часов годовой генерации.
- Волгоградская, Оренбургская области, Алтай, Хакасия, Тыва, южная часть Бурятии и Иркутской области, юг Забайкальского, Хабаровского и Амурского края, а также Сахалин. Установка аналогичной СЭС в этих регионах даст около 4,0 МВт-часов ежегодной выработки.
- Территории по линии Ростов-на-Дону, Саратов, Челябинск, Тюмень, Новосибирск, Красноярск и прилежащие к ним, способные дать 3,6 – 3,9 МВт-часов ежегодно при той же мощности.
Источник
Как работают солнечные батареи: принцип, устройство, материалы
Солнечные батареи считаются очень эффективным и экологически чистым источником электроэнергии. В последние десятилетия данная технология набирает популярность по всему миру, мотивируя многих людей переходить на дешевую возобновляемую энергию. Задача этого устройства заключается в преобразовании энергии световых лучей в электрический ток, который может использоваться для питания разнообразных бытовых и промышленных устройств.
Правительства многих стран выделяют колоссальные суммы бюджетных средств, спонсируя проекты, которые направлены на разработку солнечных электростанций. Некоторые города полностью используют электроэнергию, полученную от солнца. В России эти устройства часто используются для обеспечения электроэнергией загородных и частных домов в качестве отличной альтернативы услугам централизованного энергоснабжения. Стоит отметить, что принцип работы солнечных батарей для дома достаточно сложный. Далее рассмотрим подробнее, как работают солнечные батареи для дома подробно.
Немного истории
Первые попытки использования энергии солнца для получения электричества были предприняты еще в середине двадцатого века. Тогда ведущие страны мира предпринимали попытки строительства эффективных термальных электростанций. Концепция термальной электростанции подразумевает использование концентрированных солнечных лучей для нагревания воды до состояния пара, который, в свою очередь, вращал турбины электрического генератора.
Поскольку, в такой электростанции использовалось понятие трансформации энергии, их эффективность была минимальной. Современные устройства напрямую преобразуют солнечные лучи в ток благодаря понятию фотоэлектрический эффект.
Современный принцип работы солнечной батареи был открыт еще в 1839 году физиком по имени Александр Беккерель. В 1873 году был изобретен первый полупроводник, который сделал возможным реализовать принцип работы солнечной батареи на практике.
Принцип работы
Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.
При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины. Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение. Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.
Эффективность фотоэлементов, созданных при помощи монокристаллического метода нанесения кремния, является существенно выше, поскольку в такой ситуации кристаллы кремния имеют меньше граней, что позволяет электронам двигаться прямолинейно.
Устройство
Конструкция солнечной батареи очень проста.
Основу конструкции устройства составляют:
- корпус панели;
- блоки преобразования;
- аккумуляторы;
- дополнительные устройства.
Корпус выполняет исключительно функцию скрепления конструкции, не имея больше никакой практической пользы.
Основными элементами являются блоки преобразователей. Это и есть фотоэлемент, состоящий из материала-полупроводника, которым является кремний. Можно сказать, что состоят солнечные батареи, устройство и принцип работы которых всегда одинаковый, из каркаса и двух тонких слоев кремния, который может быть нанесен на поверхность, как монокристаллическим, так и поликристаллическим методом.
От метода нанесения кремния зависит стоимость батареи, а также ее эффективность. Если кремний наносится монокристаллическим способом, то эффективность батареи будет максимально высокой, как и стоимость.
Если говорить о том, как работает солнечная батарея, то не нужно забывать об аккумуляторах. Как правило, используется два аккумулятора. Один является основным, второй — резервным. Основной накапливает электроэнергию, сразу же направляя ее в электрическую сеть. Второй накапливает избыточную электроэнергию, после чего направляет ее в сеть, когда напряжение падает.
Среди дополнительных устройств можно выделить контроллеры, которые отвечают за распределение электроэнергии в сети и между аккумуляторами. Как правило, они работают по принципу простого реостата.
Очень важными элементами солнечной назвать диоды. Данный элемент устанавливается на каждую четвертую часть блока преобразователей, защищая конструкцию от перегрева из-за избыточного напряжения. Если диоды не установлены, то есть большая вероятность, что после первого дождя система выйдет из строя.
Как подключается
Как было сказано раньше, устройство солнечной батареи достаточно сложное. Правильная схема солнечной батареи поможет добиться максимальной эффективности. Подключать блоки преобразователей необходимо при помощи параллельно-последовательного способа, что позволит получить оптимальную мощность и максимально эффективное напряжение в электрической сети.
Разновидности солнечных батарей
Существует несколько разновидностей фотоэлементов для солнечных батарей, которые отличаются между собой строением кристаллов кремния.
Выделяют три вида фотоэлементов:
- поликристаллические;
- монокристаллические;
- аморфные.
Первый вид панелей является более дешевым, но менее эффективным, поскольку, если кремний нанесен поликристаллическим способом, то электроны не могут двигаться прямолинейно.
Монокристаллические фотоэлементы отличаются максимальным КПД, который достигает 25 %. Стоимость таких батарей выше, но для получения 1 киловатта нужна существенно меньшая площадь фотоэлементов, чем при использовании поликристаллических панелей.
Из аморфного кремния изготавливают гибкие фотоэлементы, но их КПД самый низкий и составляет 4-6 %.
Преимущества и недостатки
Основные преимущества солнечных батарей:
- солнечная энергия абсолютно бесплатная;
- позволяют получать экологически чистую электроэнергию;
- быстро окупаются;
- простая установка и принцип работы.
- большая стоимость;
- для удовлетворения потребностей небольшой семьи в электроэнергии нужна достаточно большая площадь фотоэлементов;
- эффективность существенно падает в облачную погоду.
Как добиться максимальной эффективности
При покупке солнечных батарей для дома очень важно подобрать конструкцию, которая сможет обеспечить жилище электроэнергией достаточной мощности. Считается, что эффективность солнечных батарей в пасмурную погоду составляет приблизительно 40 Вт на 1 квадратный метр за час. В действительности, в облачную погоду мощность света на уровне земли составляет приблизительно 200 Вт на квадратный метр, но 40 % солнечного света – это инфракрасное излучение, к которому солнечные батареи не восприимчивы. Также стоит учитывать, что КПД батареи редко превышает 25 %.
Иногда энергия от интенсивного солнечного света может достигать 500 Вт на квадратный метр, но при расчетах стоит учитывать минимальные показатели, что позволит сделать систему автономного электроснабжения бесперебойной.
Каждый день солнце светит в среднем по 9 часов, если брать среднегодовой показатель. За один день квадратный метр поверхности преобразователя способен выработать 1 киловатт электроэнергии. Если за сутки жильцами дома израсходуется приблизительно 20 киловатт электроэнергии, то минимальная площадь солнечных панелей должна составлять приблизительно 40 квадратных метров.
Однако, такой показатель потребления электроэнергии на практике встречается редко. Как правило, жильцы израсходуют до 10 кВТ в сутки.
Если говорить о том, работают ли солнечные батареи зимой, то стоит помнить, что в данную пору года сильно снижается длительность светового дня, но, если обеспечить систему мощными аккумуляторами, то получаемой за день энергии должно быть достаточно с учетом наличия резервного аккумулятора.
При подборе солнечной батареи очень важно обращать внимание на емкость аккумуляторов. Если нужны солнечные батареи работающие ночью, то емкость резервного аккумулятора играет ключевую роль. Также устройство должно отличаться стойкостью к частой перезарядке.
Несмотря на тот факт, что стоимость установки солнечных батарей может превысить 1 миллион рублей, затраты окупятся уже в течении нескольких лет, поскольку энергия солнца абсолютно бесплатна.
Видео
Как устроена солнечная батарея, расскажет наше видео.
Источник
Современные системы независимого электроснабжения дома на солнечных батареях
Специалисты сходятся во мнении, что будущее — за автономными экологически чистыми системами энергоснабжения. Солнечную энергетику рассматривают как наиболее вероятную альтернативу нынешним технологиям генерации электричества, в первую очередь потому, что конечному потребителю она будет обходится дешевле — если принять во внимание, что цены на электричество, вырабатываемое «традиционными» способами, растут по всему миру.
Солнечная электростанция: как это устроено
В общих чертах солнечная электростанция для частного дома состоит из нескольких компонентов, каждый из которых играет важную роль в получении энергии. В первую очередь это сами солнечные модули, которые непосредственно преобразуют солнечную энергию в постоянный ток, и инфраструктура, которая обеспечивает дальнейшее преобразование тока в переменный, аккумулирование и подачу к бытовым приборам. Как выглядит солнечный модуль, несложно представить: это плоская панель, состоящая из фотоэлектрических ячеек, которые под действием солнечного света вырабатывают постоянный ток. Если панелей несколько, они соединяются между собой специальными кабелями и коннекторами (МС4). Входящий в систему инвертор преобразует постоянный ток в переменный. Вспомогательные элементы системы – солнечные кабели и электрораспределительный щит. Автономные солнечные электростанции также включают в себя аккумуляторные батареи и контроллер их заряда/разряда. Сетевые электростанции не оборудуются батареями и контроллером по причинам, которые разберем ниже.
Автономные и сетевые: в чем различие
Полностью автономные солнечные электростанции, как понятно из названия, созданы для домов, не подключенных к централизованному электроснабжению. Днем, в период солнечной активности, автономная система обеспечивает текущие энергопотребности дома и заряжает аккумуляторные батареи, которые снабжают дом энергией в ночное время. Понятно, что в центральной России вряд ли найдется населенный пункт, к которому не подведено электричество. Однако «автономки» актуальны даже в благополучном Подмосковье, поскольку их можно использовать не только вместо централизованной подачи энергии, но и вместе с ней. Например, вы купили участок земли, к которому на данный момент не подведено централизованное энергоснабжение. С помощью автономной электростанции вы решаете проблему электроснабжения вашего объекта. Когда же вам подведут электричество, можно будет докупить контроллер для вашей солнечной электростанции (СЭС) и модернизировать автономную СЭС в автономно-гибридную. В дальнейшем к солнечной системе можно выборочно подключить некоторые наиболее часто используемые электроприборы — и, соответственно, не платить за электричество, которое они потребляют. Кроме того, автономная электростанция на солнечных батареях – отличный резервный источник электричества на случай его аварийного отключения, а такое в дачных и коттеджных поселках случается нередко, особенно после сильных ветров или ледяных дождей, а также вследствие перегрузки изношенных сетей из-за повышенного энергопотребления в пиковые часы.
Сетевые электростанции на солнечных батареях не накапливают электроэнергию, они работают параллельно с внешней сетью по приоритетной схеме. Дом в основном снабжается от солнечных модулей, а внешняя сеть используется только ночью, при плохой погоде или при недостатке мощности. Излишки энергии, выработанной солнечными батареями, можно даже продавать другим пользователям – подробнее об этом здесь.
При выборе поставщика солнечной электроустановки нужно обращать внимание на множество аспектов, одним из них является комплектность решения. Ориентируясь только на цену «коробочного» решения и не владея тонкостями вопроса, потребитель может в итоге переплатить. Часто в цену комплекта включены не все необходимые компоненты и потребитель узнает об этом только на этапе монтажа, когда нужно докупить тот или иной компонент. Но это меньшее из зол. Хуже, когда в составе электроустановки используется не самое надёжное или несовместимое оборудование. Эта ситуация чревата уже серьезными потерями: от низкой эффективности станции за счет несогласованной работы плохо подобранного оборудования до выхода всей системы из строя из-за поломки какого-либо элемента. А ведь солнечная электроустановка — удовольствие не из дешевых, и работа электростанции рассчитана на 30 и более лет. Как не попасться на удочку недобросовестных продавцов и какие критерии определяют надежность поставщика, можно почитать здесь.
Какие солнечные модули лучше? Доступно о технологиях
В Интернете постоянно идут настоящие баталии по поводу «Какие солнечные батареи лучше?!». Чтобы понять это, придется немного углубиться в технические подробности.
Фотоэлектрические элементы солнечных батарей изготавливаются на основе кремния, который может быть «организован» несколькими способами. Наибольшее распространение на рынке получили моно- и поликристаллические панели. Они состоят из пластин, которые имеют в основе один цельный или множество отдельных кремниевых кристаллов высокой чистоты. Для защиты от внешних воздействий ячейки кристаллических солнечных модулей покрывают закаленным стеклом, хорошо пропускающим свет.
КПД монокристаллических модулей выше (в среднем около 18%) – следовательно, они вырабатывают больше энергии на единицу площади в сравнении с поликристаллическими (обычно не превышает 16%); однако выше и цена. Недостатки у обеих разновидностей общие.
- Потеря мощности при нагреве. Она может быть очень существенной – до 25% (в пределах рабочей температуры батарей). Эта проблема актуальна не только в жарком климате. Даже в прохладном Подмосковье в безветренный солнечный день темный предмет, находящийся на солнцепеке, нагревается до температур куда более высоких, чем окружающий воздух.
- Невысокая эффективность при слабой освещенности и высокая чувствительность к затенению. Существует мнение, что эти недостатки связаны скорее с качеством изготовления панелей у отдельных производителей, чем с особенностями технологии в целом, однако это спорный вопрос.
Нивелировать минусы кристаллических батарей пытаются разными способами – например, использованием технологии PERC (пассивация задней панели), но это удорожает производство и, как следствие, сказывается на стоимости солнечных панелей.
В отличие от кристаллических тонкопленочные модули хорошо улавливают рассеянный свет и в них меньше всего кремния, поэтому они дешевле, но КПД таких модулей не очень высок — 10-12%, поэтому для эффективного электроснабжения нужно больше площади. К тому же срок службы у них меньше из-за более высокой деградации.
Гетероструктурные солнечные панели являются новинкой российского солнечного рынка, чего не скажешь про зарубежный. Эта технология на данный момент является наиболее современной и эффективной, а где, как не в Европе, знают толк в высокой эффективности и надежности? Во всем мире пока насчитывается всего несколько производителей солнечных панелей этого типа, так как инвестиции в организацию производства такого типа довольно серьезные, но и продукция имеет совершенно иные показатели, определяющие качество продукта премиального уровня. Не без гордости стоит заметить, что одним из производителей, выпускающих гетероструктурные батареи, является российская компания «Хевел», которая разработала и внедрила собственную технологию изготовления гетероструктурных модулей. Примечательно, что Хевел является единственным производителем этих батарей не только в России, но и в Европе. Предприятие осуществило грандиозную модернизацию производственных мощностей, оснастив их самым передовым европейским оборудованием. Теперь «Хевел» может предложить современные солнечные батареи не только российскому потребителю, но и взыскательным клиентам за рубежом.
Чем же так хороши гетероструктурные батареи?
Гетероструктурные солнечные панели сочетают в себе преимущества тонкопленочных и кристаллических: по КПД они, как уже говорилось, превосходят модули на поли- и монокристаллах, отлично работают в условиях переменной облачности и менее чувствительны к жаре. Еще одно важное преимущество гетероструктурных модулей – низкий коэффициент деградации; выражаясь простым языком – они практически не подвержены «старению» и сохраняют свою высокую эффективность даже спустя десятки лет. Официальная гарантия на производительность модулей Хевел составляет 25 лет. За это время они могут потерять максимально не более 17% мощности. Таким показателем не может похвастаться ни одна из вышеописанных технологий. Важно отметить, что солнечные модули отечественного производства адаптированы под особенности российского климата, и результаты их испытаний были получены именно в тех условиях, в которых им предстоит работать.
Высокая эффективность модулей (до 22,3 % для двусторонних модулей (BiFi +20%)), в том числе в условиях слабой освещенности, низкая степень деградации и температурный коэффициент, соответствие российским стандартам и техническим требованиям, адаптированность к российскому климату – все это в целом обеспечивает высочайшие показатели по выработке (до +20% для двусторонних модулей) и высочайшее качество продукта.
Монтаж: основные моменты
В частном доме лучшее место для установки солнечных модулей – крыша. В принципе, нет никаких технических ограничений и для установки на земле, но из-за высокой стоимости земли этот вариант менее популярен.
Форма кровли может быть любой: плоская, обычная скатная, вальмовая, многощипцовая и пр. Оптимальный угол наклона крыши может разниться от региона к региону. Точный угол наклона крыши в конкретном регионе необходимо уточнять у специалистов. Важно обращаться в компании, имеющие значительный опыт в реализации проектов на рынке и зарекомендовавшие себя в качестве экспертов отрасли. Одной из таких компаний можно считать все того же российского производителя гетероструктурных панелей – компанию «Хевел». «Хевел»по праву считается брендом №1 на рынке солнечной энергетики по совокупному объему построенных в России солнечных станций.
Хорошо, когда угол наклона крыши можно предусмотреть еще на этапе проектирования дома, но чаще всего солнечные модули устанавливаются на уже готовую крышу. В этом нет ничего страшного: наклон модулей можно откорректировать с помощью опорных конструкций. Солнечные модули лучше всего устанавливать на южной стороне кровли – там они будут получать самое большое количество солнца. Хорошо себя показывает и установка с ориентацией на запад или восток, северную сторону специалисты не рекомендуют. В целом нежелательно, чтобы крышу затеняли большие деревья или другие дома – это в бОльшей или мЕньшей степени (в зависимости от типа модулей, о чем писали выше) снижает КПД солнечных элементов.
Материал кровли тоже не играет особой роли: компания «Хевел», например, подбирает опорные конструкции к конкретной кровле, ее конфигурации и материалу. Если на крыше есть мансардные окна, установлены аэраторы или система снегозадержателей, это не проблема: солнечные модули совершенно не обязательно устанавливать вплотную друг к другу.
Площадь кровли влияет на количество солнечных панелей, которые можно на ней установить. Зачастую полезная площадь ограничена, поэтому важным аспектом является коэффициент использования пространства: чем выше эффективность модулей на единицу площади, тем больше кВт вы сможете получить с одной и той же поверхности. В случае с гетероструктурными батареями, ввиду их высокой эффективности, коэффициент использования пространства максимальный. Допустим, у нас есть дом размерами 6х9 м с обычной двускатной крышей; полная полезная площадь (одного ската) будет около 30м 2 ; на таком скате можно установить около 15 гетероструктурных модулей Хевел (что составляет 4,8 кВт).
Несущая способность стропильной системы – важный момент, так как на кровлю будет приходиться заметный дополнительный вес. Упомянутая выше солнечная электростанция из 15 модулей весит около 285 кг, плюс некоторый дополнительный вес от крепежных элементов. Перед установкой модулей сертифицированная «Хевел» монтажная бригада проводит аудит кровельных конструкций; обычно никакое дополнительное усиление им не требуется, так как нагрузка распределенная.
Сроки монтажа составляют обычно 1-2 дня, работы не связаны с особенным дискомфортом для владельцев дома или соседей. Если установка солнечных панелей запланирована на стадии строительства дома, какое-то время может занять прокладка штроб для кабелей; в уже заселенном доме проводку можно проложить в кабель-каналах.
Эксплуатация: самые важные вопросы
Как солнечные панели выдерживают плохую погоду? Если речь идет о качественном продукте, то, например, гетероструктурные модули «Хевел» имеют класс герметизации IP 65, что означает полную защиту от попадания пыли и струй воды независимо от их направления. Что касается механической прочности, то по результатам инструментальных испытаний модуль «Хевел» выдерживает нагрузку до 2,4 кПа – это около 245 кг/м 2 . Таким образом, ни дождь, ни град не могут нанести вреда. Если речь идет о выпадении снега, то поскольку солнечные панели немного нагреваются во время работы и располагаются под углом, снег сходит без каких-либо проблем. Если по какой-то причине этого не произошло (что очень маловероятно), снег можно убрать автомобильной щеткой или другим подручным инструментом с мягкой рабочей частью. Диапазон рабочих температур модулей «Хевел» – от -40 до +85°С, существует даже специальное арктическое исполнение для температур до -60°С.
Нужно ли солнечной электростанции специальное обслуживание? Практически нет. При необходимости солнечные панели можно мыть, если на поверхности скопились грязь или птичий помет. Мелкая пыль, как правило, смывается осадками. Что до периферических устройств (инвертор, контроллер, аккумуляторы), то их, как любое электрооборудование, желательно держать в отапливаемом помещении вдали от источников огня и нагревательных приборов.
Источник