Индикация уровень заряда аккумулятора

Содержание
  1. Какие существуют индикаторы заряда автомобильного аккумулятора
  2. Какие бывают индикаторы заряда автомобильного аккумулятора?
  3. Встроенный индикатор заряда на аккумуляторе
  4. Фабричные индикаторы заряда АКБ
  5. Индикатор уровня заряда аккумуляторной батареи DC-12 В
  6. Панель с индикатором от TMC
  7. Индикаторы Faria Euro Black Style и Signature Gold Style
  8. Индикатор заряда аккумуляторной батареи своими руками
  9. Глазок индикатор заряда аккумулятора
  10. Для чего нужен глазок у автомобильного аккумулятора
  11. Как работает индикатор и насколько он точен
  12. Устройство прибора
  13. Погрешности в работе индикатора
  14. Обозначения цветов
  15. Почему после зарядки может не загореться зеленый цвет
  16. 13 схем индикаторов разряда Li-ion аккумуляторов: от простых к сложным
  17. Вариант №1
  18. Вариант №2
  19. Вариант №3
  20. Вариант №4
  21. Вариант №5
  22. Вариант №6
  23. Вариант №7
  24. Вариант №8
  25. Вариант №9
  26. Вариант №10
  27. Вариант №11
  28. Вариант №12
  29. Вариант №13

Какие существуют индикаторы заряда автомобильного аккумулятора

Аккумулятор играет ключевую роль при запуске двигателя автомобиля. И насколько успешным будет этот запуск, во многом зависит от степени заряженности аккумуляторной батареи. А многие из нас контролируют уровень заряда АКБ? Называется, ответьте себе сами на этот вопрос. Поэтому высока вероятность того, что вы в один прекрасный день не заведёте автомобиль из-за дохлого аккумулятора. Собственно, сама проверка степени зарядки несложная. Нужно просто периодически измерять напряжение аккумулятора автомобиля мультиметром или вольтметром. Но было бы гораздо удобнее иметь простой индикатор, показывающий состояние заряда аккумулятора. О таких индикаторах пойдёт речь в этом материале.

Какие бывают индикаторы заряда автомобильного аккумулятора?

Технологии не стоят на месте и производители автомобильной техники изо всех сил стараются сделать поездки на автомобиле и его обслуживание максимально комфортным. Поэтому на современных автомобилях в бортовом компьютере, среди прочих функций, можно найти данные о напряжении аккумуляторной батареи. Но такие возможности есть далеко не на всех автомобилях. На старых авто может присутствовать аналоговый вольтметр, по которому достаточно сложно понять, в каком состоянии находится АКБ. Для новичков в автомобильном деле советуем ознакомиться с материалом о норме заряда аккумулятора автомобиля.

Читайте также:  Ресурс аккумулятора смартфона xiaomi

Такие индикаторы заряда выпускаются и сторонними производителями. Их достаточно легко разместить где-нибудь в салоне и подключить в бортовую сеть. Кроме того, в интернете есть несложные схемы изготовления индикаторов заряда своими руками.

Давайте, разберём все эти разновидности индикаторов для АКБ подробнее.
Вернуться к содержанию

Встроенный индикатор заряда на аккумуляторе

Встроенные индикаторы заряда можно встретить преимущественно на необслуживаемых автомобильных аккумуляторах. Это поплавковый индикатор, который ещё называют гидрометром. Давайте, посмотрим, из чего он состоит и как работает. На фотографии ниже можно посмотреть, как этот индикатор выглядит на корпусе аккумулятора.

Встроенный индикатор автомобильного аккумулятора

Индикатор снятый с аккумулятора

Схематично устройство встроенного индикатора АКБ можно представить следующим образом.

Схематическое устройство индикатора заряда АКБ

Принцип действия у большинства гидрометров следующий. Индикатор может показывать три различных положения в следующих ситуациях:

  • По мере зарядки аккумулятора увеличивается плотность электролита. При этом поплавок в форме шарика зелёного цвета поднимается по трубке вверх и становится виден через световод в глазок индикатора. Обычно зелёный шарик всплывает при степени заряженности батареи от 65 процентов и выше;
  • Если шарик тонет в электролите, то значит плотность ниже нормы и заряд батареи недостаточен. В этот момент в «глазок» индикатора будет видна трубка индикатора чёрного цвета. Это будет говорить о необходимости зарядки. В некоторых моделях добавляют шарик красного цвета, который поднимается по трубке при пониженной плотности. Тогда в «глазке» индикатора будет красный цвет;
  • И ещё один вариант – это понижение уровня электролита. Тогда через «глазок» индикатора будет видно поверхность электролита. Это будет говорить о необходимости доливки дистиллированной воды. Правда, в случае необслуживаемого аккумулятора сделать это будет проблематично.

Аккумулятор требует зарядки

Требуется долив воды

  • Индикатор установлен только в одной из шести банок аккумуляторной батареи. Это значит, что данные по плотности и степени заряженности у вас будут только по одной банке. Поскольку сообщения между ними нет, о ситуации в других банках остаётся только догадываться. К примеру, в этом элементе уровень электролита может быть нормальный, а в некоторых других уже недостаточный. Ведь испарение воды из электролита по банкам отличается (в крайних этот процесс идёт более интенсивно);
  • Индикатор выполняется из стекла и пластика. Пластиковые детали могут покоробиться от нагрева или охлаждения. В результате вы будете видеть искажённые данные;
  • Плотность электролита зависит его температуры. Гидрометр никак не учитывает это в своих показаниях. Например, на холодном электролите он может показать нормальную плотность, хотя она пониженная.

Следует отметить, что для проверки заряда аккумулятора по встроенному индикатору в АКБ, нужно открыть капот, протереть «глазок» и посмотреть. Большинство автолюбителей заглядывают под капот от случая к случаю. Поэтому хотелось бы иметь некий прибор, показывающий степень заряда АКБ прямо в салоне. И такие устройства были разработаны производителями автомобилей и сторонними компаниями.
Дополнительно рекомендуем прочитать статью про самостоятельное обслуживание аккумулятора.

Фабричные индикаторы заряда АКБ

Сегодня в продаже можно найти достаточно интересные устройства для контроля уровня зарядки аккумулятора по его напряжению. Давайте рассмотрим некоторые из них.

Индикатор уровня заряда аккумуляторной батареи DC-12 В

Это устройство продаётся в виде конструктора. Оно подойдёт для тех, кто дружит с электротехникой и паяльником.

Схема индикатора зарядки

Основные характеристики индикатора DC-12 В:

  • Диапазон напряжений: 2,5─18 вольт;
  • Максимальный потребляемый ток: до 20 мА;
  • Габариты печатной платы: 43 на 20 миллиметров.

Панель с индикатором от TMC

Этот индикатор может заинтересовать тех, кто установил себе второй аккумулятор в машину.

Индикатор от TMC

Индикаторы Faria Euro Black Style и Signature Gold Style

В магазинах можно найти индикаторы уровня заряда аккумулятора 12В от фирмы Faria (США).

Euro Black Style

Signature Gold Style

Индикатор заряда аккумуляторной батареи своими руками

В завершение рассмотрим, как сделать индикатор заряда аккумулятора своими руками. В сети есть огромное количество всевозможных схем для создания подобных индикаторов. Была выбрана одна, наиболее распространённая схема, по сборке которой было достаточно много положительных отзывов.

Устройство предназначено для контроля работы автомобильной АКБ с напряжением в бортовой сети от 6 до 14 вольт. В принципе, оно похожа на вышеупомянутый набор DC-12 В, который продаётся в магазинах. Это и не удивительно, поскольку принцип действия тот же.

Для сборки индикатора потребуются:

  • Транзисторы: по одному ВС547 и ВС557;
  • Резисторы: два 1 кОм, три 220 Ом и один 2,2 кОм;
  • Стабилитроны: по одному 9,1 и 10 вольт;
  • Печатная плата;
  • Набор светодиодов (красный, синий, зелёный).

Схема для сборки индикатора своими руками

Старайтесь скомпоновать комплектующие на печатной плате так, чтобы они занимали как можно меньше места. Перед пайкой светодиодов проверьте их тестером на соответствие цвета и контактов. Лучше паяйте светодиоды не напрямую к плате, а выносите их на проводах, чтобы потом было удобнее устанавливать индикатор на автомобильной панели приборов.

Этот самодельный индикатор демонстрирует определённый уровень зарядки АКБ, не выводя конкретного значения напряжения. Корректная работа:

  • Красный светодиод загорается при напряжении 6─11 вольт (это критический разряд);
  • Синий горит при 11─13 вольт (в штатном режиме работы);
  • Зелёный включается при напряжении больше 13 вольт (полностью заряженная АКБ).

Источник

Глазок индикатор заряда аккумулятора

Практически каждому владельцу автомобиля знакома ситуация, когда ни с того ни с сего машина не заводится, а в последствии выясняется, что причина в разряженном аккумуляторе. Чтобы избежать такого, нужно следить за уровнем заряда, а для проверки достаточно только заглянуть под капот.

Для чего нужен глазок у автомобильного аккумулятора

Многие автомобильные аккумуляторы оснащены специальным прибором, который измеряет и показывает степень заряженности батареи. Встроенный индикатор заряда находится на лицевой (верхней) стороне устройства и похож на глазок – посмотрев на него, автовладелец быстро понимает, что всё в порядке либо необходима подзарядка.

Интересно! Многие думают, что это лампочка, которая загорается разными цветами. Однако никакой лампочкой устройство не оснащено. Всё, что видит человек, заглядывая в глазок – это цветной шарик или пустота.

Как работает индикатор и насколько он точен

Под маленьким глазком скрывается встроенный аэрометр (прибор, измеряющий плотность жидкости). Внутри аккумулятора электролит и, измеряя его плотность, прибор сообщает, есть ли необходимость в зарядке.

Устройство прибора

Аэрометр представляет собой небольшую трубку, в конце которой находится поплавок в виде цветного шарика. Если аккумулятор заряжен хорошо, плотность электролита высокая, и шарик поднимается наверх. Именно его и видит автовладелец через лупу глазка.

При недостаточном заряде плотность электролита падает, и зеленый шарик тонет. Вместо него видна только трубка устройства черного цвета и глазок кажется черным. В некоторых аккумуляторах помимо зеленого есть еще и красный шарик. Именно он всплывает наверх при понижении плотности, сменяя зелёный.

Помимо недостаточного заряда в аккумуляторе может быть недостаток электролита. В таком случае в глазке видна поверхность жидкости, и индикатор приобретает белый цвет.

Погрешности в работе индикатора

Не стоит безоговорочно верить показателю индикатора и полностью на него полагаться. Судя по многочисленным отзывам автолюбителей, в его работе есть погрешности, и он не всегда показывает реальное состояние аккумулятора. Причина может быть в следующем:

  • плотность электролита меняется в зависимости от температуры – холод повышает его плотность, и индикатор будет показывать норму при том, что аккумулятор на самом деле почти разряжен;
  • стеклянные и пластиковые части прибора могут повредиться из-за высокой температуры и повлиять на его точность;
  • аккумулятор состоит из 6 банок, а прибор установлен только в одной и отображает данные только по ней, ситуация же в остальных банках может существенно отличаться и влиять на общую работу всего АКБ.

Автолюбители отмечают еще один недостаток такого индикатора – чтобы проверить заряд нужно открыть капот и заглянуть под него. Конечно же, гораздо удобнее, когда данные отображаются прямо в салоне автомобиля.

Обозначения цветов

Глазок у аккумулятора предполагает три цвета – зелёный, белый и черный, в зависимости от заряда батареи и состояния электролита. В некоторых устройствах используется еще один цвет – красный. У каждого цвета есть своё значение, благодаря которому автолюбитель понимает, заряжен или разряжен аккумулятор.

  • Зеленый индикатор на аккумуляторе. Если глазок зелёный – можете быть спокойны. Это означает, что батарея заряжена, и подзарядка не требуется. Можно пользоваться автомобилем в обычном режиме.
  • Красный индикатор на аккумуляторе. Красный глазок — то тревожный сигнал, сообщающий автомобилисту, что АКБ разряжен и требует срочной подзарядки. В этом случае нужно незамедлительно достать его из авто и полностью зарядить.

Внимание! Не оставляйте АКБ полностью разряженным надолго, это может вывести его из строя.

  • Черный индикатор на аккумуляторе. Черный глазок имеет то же значение, что и красный. Плотность электролита понизилась, зелёный шарик утонул, и вы видите в глазке черноту трубки. Требуется зарядка.
  • Белый индикатор на аккумуляторе. Если глазок белый, значит в аккумуляторе недостаточно электролита. Это можно поправить самостоятельно, разобрав устройство и долив в него дистиллированную воду.

Почему после зарядки может не загореться зеленый цвет

Некоторые сталкиваются с тем, что даже после длительной зарядки цвет глазка не становится зелёным. У этого есть несколько причин:

  • зелёный шарик просто застрял в узком проходе и не встал на нужное место – слегка потрясти АКБ, чтобы сдвинуть его;
  • грязь от пластин, которые со временем осыпаются, мешает индикатору показывать правильное значение;
  • аккумулятор вышел из строя.

Глазок на аккумуляторе – удобный способ проверить степень его заряженности, однако многие автолюбители утверждают, что это бесполезный наворот и полностью полагаться на его значения не стоит. Для точной проверки заряда лучше измерьте напряжение с помощью нагрузочной вилки

Остались вопросы или есть что добавить? Тогда напишите нам об этом в комментариях, это позволит сделает материал более полным и точным.

Источник

13 схем индикаторов разряда Li-ion аккумуляторов: от простых к сложным

Что может быть печальнее, чем внезапно севший аккумулятор в квадрокоптере во время полета или отключившийся металлоискатель на перспективной поляне? Вот если бы можно было бы заранее узнать, насколько сильно заряжен аккумулятор! Тогда мы могли бы подключить зарядку или поставить новый комплект батарей, не дожидаясь грустных последствий.

И вот тут как раз рождается идея сделать какой-нибудь индикатор, который заранее подаст сигнал о том, что батарейка скоро сядет. Над реализацией этой задачи пыхтели радиолюбители всего мира и сегодня существует целый вагон и маленькая тележка различных схемотехнических решений — от схем на одном транзисторе до навороченных устройств на микроконтроллерах.

Далее будут представлены только те индикаторы разряда li-ion аккумуляторов, которые не только проверены временем и заслуживают вашего внимания, но и с легкостью собираются своими руками.

Вариант №1

Начнем, пожалуй, с простенькой схемки на стабилитроне и транзисторе:

Разберем, как она работает.

Пока напряжение выше определенного порога (2.0 Вольта), стабилитрон находится в пробое, соответственно, транзистор закрыт и весь ток течет через зеленый светодиод. Как только напряжение на аккумуляторе начинает падать и достигает значения порядка 2.0В + 1.2В (падение напряжение на переходе база-эмиттер транзистора VT1), транзистор начинает открываться и ток начинает перераспределяться между обоими светодиодами.

Если взять двухцветный светодиод, то мы получим плавный переход от зеленого к красному, включая всю промежуточную гамму цветов.

Типовое различие прямого напряжения в двухцветных светодиодах составляет 0.25 Вольта (красный зажигается при более низком напряжении). Именно этой разницей определяется область полного перехода между зеленым и красным цветом.

Таким образом, не смотря на свою простоту, схема позволяет заранее узнать, что батарейка начала подходить к концу. Пока напряжение на аккумуляторе составляет 3.25В или более, горит зеленый светодиод. В промежутке между 3.00 и 3.25V к зеленому начинает подмешиваться красный — чем ближе к 3.00 Вольтам, тем больше красного. И, наконец, при 3V горит только чисто красный цвет.

Недостаток схемы в сложности подбора стабилитронов для получения необходимого порога срабатывания, а также в постоянном потреблении тока порядка 1 мА. Ну и, не исключено, что дальтоники не оценят эту задумку с меняющимися цветами.

Кстати, если в эту схему поставить транзистор другого типа, ее можно заставить работать противоположным образом — переход от зеленого к красному будет происходить, наоборот, в случае повышения входного напряжения. Вот модифицированная схема:

Вариант №2

В следующей схеме использована микросхема TL431, представляющая собой прецизионный стабилизатор напряжения.

Порог срабатывания определяется делителем напряжения R2-R3. При указанных в схеме номиналах он составляет 3.2 Вольта. При снижении напряжения на аккумуляторе до этого значения, микросхема перестает шунтировать светодиод и он зажигается. Это будет сигналом к тому, что полный разряд батареи совсем близок (минимально допустимое напряжение на одной банке li-ion равно 3.0 В).

Если для питания устройства применяется батарея из нескольких последовательно включенных банок литий-ионного аккумулятора, то приведенную выше схему необходимо подключить к каждой банке отдельно. Вот таким образом:

Для настройки схемы подключаем вместо батарей регулируемый блок питания и подбором резистора R2 (R4) добиваемся зажигания светодиода в нужный нам момент.

Вариант №3

А вот простая схема индикатора разрядки li-ion аккумулятора на двух транзисторах:Порог срабатывания задается резисторами R2, R3. Старые советские транзисторы можно заменить на BC237, BC238, BC317 (КТ3102) и BC556, BC557 (КТ3107).

Вариант №4

Схема на двух полевых транзисторах, потребляющая в ждущем режиме буквально микротоки.

При подключении схемы к источнику питания, положительное напряжение на затворе транзистора VT1 формируется с помощью делителя R1-R2. Если напряжение выше напряжение отсечки полевого транзистора, он открывается и притягивает затвор VT2 на землю, тем самым закрывая его.

В определенный момент, по мере разряда аккумулятора, напряжение, снимаемое с делителя становится недостаточным для отпирания VT1 и он закрывается. Следовательно, на затворе второго полевика появляется напряжение, близкое к напряжению питания. Он открывается и зажигает светодиод. Свечение светодиода сигнализирует нам о необходимости подзаряда аккумулятора.

Транзисторы подойдут любые n-канальные с низким напряжением отсечки (чем меньше — тем лучше). Работоспособность 2N7000 в этой схеме не проверялась.

Вариант №5

На трех транзисторах:

Думаю, схема не нуждается в пояснениях. Благодаря большому коэфф. усиления трех транзисторных каскадов, схема срабатывает очень четко — между горящим и не горящим светодиодом достаточно разницы в 1 сотую долю вольта. Потребляемый ток при включенной индикации — 3 мА, при выключенном светодиоде — 0.3 мА.

Не смотря на громоздкий вид схемы, готовая плата имеет достаточно скромные габариты:

С коллектора VT2 можно брать сигнал, разрешающий подключение нагрузки: 1 — разрешено, 0 — запрещено.

Транзисторы BC848 и BC856 можно заменить на ВС546 и ВС556 соответственно.

Вариант №6

Эта схема мне нравится тем, что она не только включает индикацию, но и отрубает нагрузку.

Жаль только, что сама схема от аккумулятора не отключается, продолжая потреблять энергию. А жрет она, благодаря постоянно горящему светодиоду, немало.

Зеленый светодиод в данном случае выступает в роли источника опорного напряжения, потребляя ток порядка 15-20 мА. Чтобы избавиться от такого прожорливого элемента, вместо источника образцового напряжения можно применить ту же TL431, включив ее по такой схеме*:

*катод TL431 подключить ко 2-ому выводу LM393.

Вариант №7

Схема с применением так называемых мониторов напряжения. Их еще называют супервизорами и детекторами напряжения (voltdetector’ами). Это специализированные микросхемы, разработанные специально для контроля за напряжением.

Вот, например, схема, поджигающая светодиод при снижении напряжения на аккумуляторе до 3.1V. Собрана на BD4731.

Согласитесь, проще некуда! BD47xx имеет открытый коллектор на выходе, а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.

Аналогичным образом можно применить любой другой супервизор на любое другое напряжение.

Вот еще несколько вариантов на выбор:

  • на 3.08V: TS809CXD, TCM809TENB713, MCP103T-315E/TT, CAT809TTBI-G;
  • на 2.93V: MCP102T-300E/TT, TPS3809K33DBVRG4, TPS3825-33DBVT, CAT811STBI-T3;
  • серия MN1380 (или 1381, 1382 — они отличаются только корпусами). Для наших целей лучше всего подходит вариант с открытым стоком, о чем свидетельствует дополнительная циферка «1» в обозначении микросхемы — MN13801, MN13811, MN13821. Напряжение срабатывания определяется буквенным индексом: MN13811-L как раз на 3,0 Вольта.

Также можно взять советский аналог — КР1171СПхх:

В зависимости от цифрового обозначения, напряжение детекции будет разным:

Сетка напряжений не очень-то подходит для контроля за li-ion аккумуляторами, но совсем сбрасывать эту микросхему со счетов, думаю, не стоит.

Неоспоримые достоинства схем на мониторах напряжения — чрезвычайно низкое энергопотребление в выключенном состоянии (единицы и даже доли микроампер), а также ее крайняя простота. Зачастую вся схема умещается прямо на выводах светодиода:

Чтобы сделать индикацию разряда еще более заметной, выход детектора напряжения можно нагрузить на мигающий светодиод (например, серии L-314). Или самому собрать простейшую «моргалку» на двух биполярных транзисторах.

Пример готовой схемы, оповещающей о севшей батарейке с помощью вспыхивающего светодиода приведен ниже:

Еще одна схема с моргающим светодиодом будет рассмотрена ниже.

Вариант №8

Крутая схема, запускающая моргание светодиода, если напряжение на литиевом аккумуляторе упадет до 3.0 Вольта:

Эта схема заставляет вспыхивать сверхяркий светодиод с коэффициентом заполнения 2.5% (т.е. длительная пауза — коротка вспышка — опять пауза). Это позволяет снизить потребляемый ток до смешных значений — в выключенном состоянии схема потребляет 50 нА (нано!), а в режиме моргания светодиодом — всего 35 мкА. Сможете предложить что-нибудь более экономичное? Вряд ли.

Как можно было заметить, работа большинства схем контроля за разрядом сводится к сравнению некоего образцового напряжения с контролируемым напряжением. В дальнейшем эта разница усиливается и включает/отключает светодиод.

Обычно в качестве усилителя разницы между опорным напряжением и напряжением на литиевом аккумуляторе используют каскад на транзисторе или операционный усилитель, включенный по схеме компаратора.

Но есть и другое решение. В качестве усилителя можно применить логические элементы — инверторы. Да, это нестандартное использование логики, но это работает. Подобная схема приведена в следующем варианте.

Вариант №9

Схема на 74HC04.

Рабочее напряжение стабилитрона должно быть ниже напряжение срабатывания схемы. Например, можно взять стабилитроны на 2.0 — 2.7 Вольта. Точная подстройка порога срабатывания задается резистором R2.

Схема потребляет от батареи около 2 мА, так что ее тоже надо включать после выключателя питания.

Вариант №10

Это даже не индикатор разряда, а, скорее, целый светодиодный вольтметр! Линейная шкала из 10 светодиодов дает наглядное представление о состоянии аккумулятора. Весь функционал реализован всего на одной-единственной микросхеме LM3914:

Делитель R3-R4-R5 задает нижнее (DIV_LO) и верхнее (DIV_HI) пороговые напряжения. При указанных на схеме значениях свечению верхнего светодиода соответствует напряжение 4.2 Вольта, а при снижении напряжения ниже 3х вольт, погаснет последний (нижний) светодиод.

Подключив 9-ый вывод микросхемы на «землю», можно перевести ее в режим «точка». В этом режиме всегда светится только один светодиод, соответствующий напряжению питания. Если оставить как на схеме, то будет светиться целая шкала из светодиодов, что нерационально с точки зрения экономичности.

В качестве светодиодов нужно брать только светодиоды красного свечения, т.к. они обладают самым малым прямым напряжением при работе. Если, например, взять синие светодиоды, то при севшем до 3х вольт аккумуляторе, они, скорее всего, вообще не загорятся.

Сама микросхема потребляет около 2.5 мА, плюс 5 мА на каждый зажженный светодиод.

Недостатком схемы можно считать невозможность индивидуальной настройки порога зажигания каждого светодиода. Можно задать только начальное и конечное значение, а встроенный в микросхему делитель разобьет этот интервал на равные 9 отрезков. Но, как известно, ближе к концу разряда, напряжение на аккумуляторе начинает очень стремительно падать. Разница между аккумуляторами, разряженными на 10% и 20% может составлять десятые доли вольта, а если сравнить эти же аккумуляторы, только разряженненные на 90% и 100%, то можно увидеть разницу в целый вольт!

Типичный график разряда Li-ion аккумулятора, приведенный ниже, наглядно демонстрирует данное обстоятельство:

Таким образом, использование линейной шкалы для индикации степени разряда аккумулятора представляется не слишком целесообразным. Нужна схема, позволяющая задать точные значения напряжений, при которых будет загораться тот или иной светодиод.

Полный контроль над моментами включения светодиодов дает схема, представленная ниже.

Вариант №11

Данная схема является 4-разрядным индикатором напряжения на аккумуляторе/батарейке. Реализована на четырех ОУ, входящих в состав микросхемы LM339.

Схема работоспособна вплоть до напряжения 2 Вольта, потребляет меньше миллиампера (не считая светодиода).

Разумеется, для отражения реального значения израсходованной и оставшейся емкости аккумулятора, необходимо при настройке схемы учесть кривую разряда используемого аккумулятора (с учетом тока нагрузки). Это позволит задать точные значения напряжения, соответствующие, например, 5%-25%-50%-100% остаточной емкости.

Вариант №12

Ну и, конечно, широчайший простор открывается при использовании микроконтроллеров со встроенным источником опорного напряжения и имеющих вход АЦП. Тут функционал ограничивается только вашей фантазией и умением программировать.

Как пример приведем простейшую схему на контроллере ATMega328.

Хотя тут, для уменьшения габаритов платы, лучше было бы взять 8-миногую ATTiny13 в корпусе SOP8. Тогда было бы вообще шикарно. Но пусть это будет вашим домашним заданием.

Светодиод взят трехцветный (от светодиодной ленты), но задействованы только красный и зеленый.

Готовую программу (скетч) можно скачать по этой ссылке.

Программа работает следующим образом: каждые 10 секунд опрашивается напряжение питания. Исходя из результатов измерений МК управляет светодиодами с помощью ШИМ, что позволяет получать различные оттенки свечения смешением красного и зеленого цветов.

Свежезаряженный аккумулятор выдает порядка 4.1В — светится зеленый индикатор. Во время зарядки на АКБ присутствует напряжение 4.2В, при этом будет моргать зеленый светодиод. Как только напряжение упадет ниже 3.5В, начнет мигать красный светодиод. Это будет сигналом к тому, что аккумулятор почти сел и его пора заряжать. В остальном диапазоне напряжений индикатор будет менять цвет от зеленого к красному (в зависимости от напряжения).

Вариант №13

Ну и на закуску предлагаю вариант переделки стандартной платы защиты (их еще называют контроллерами заряда-разряда), превращающий ее в индикатор севшего аккумулятора.

Эти платы (PCB-модули) добываются из старых батарей мобильных телефонов чуть ли не в промышленных масштабах. Просто подбираете на улице выброшенный аккумулятор от мобилы, потрошите его и плата у вас в руках. Все остальное утилизируете как положено.

Чаще всего PCB-плата представляет собой вот такую схемку:

Микросборка 8205 — это два миллиомных полевика, собранных в одном корпусе.

Внеся в схему некоторые изменения (показаны красным цветом), мы получим прекрасный индикатор разряда li-ion аккумулятора, практически не потребляющий ток в выключенном состоянии.

Так как транзистор VT1.2 отвечает за отключение зарядного устройства от банки аккумулятора от при перезаряде, то он в нашей схеме лишний. Поэтому мы полностью исключили этот транзистор из работы, разорвав цепь стока.

Резистор R3 ограничивает ток через светодиод. Его сопротивление необходимо подобрать таким образом, чтобы свечение светодиода было уже заметным, но потребляемый ток еще не был слишком велик.

Кстати, можно сохранить все функции модуля защиты, а индикацию сделать с помощью отдельного транзистор, управляющий светодиодом. То есть индикатор будет загораться одновременно с отключением аккумулятора в момент разряда.

Вместо 2N3906 подойдет любой имеющийся под рукой маломощный p-n-p транзистор. Просто подпаять светодиод напрямую не получится, т.к. выходной ток микросхемы, управляющий ключами, слишком мал и требует усиления.

Как, наверное, не сложно догадаться, схемы могут быть использованы и наоборот — в качестве индикатора заряда.

Источник

Оцените статью