Индикатор напряжения аккумулятора 12в

LED ТЕСТЕР НАПРЯЖЕНИЯ АККУМУЛЯТОРА

Представляем простой самодельный автомобильный аккумуляторный тестер / монитор. Устройство с очень простой схемой, хотя и довольно полезное, специально предназначенный для людей, которые хотят знать какой заряд в настоящее время имеет их автомобильный аккумулятор (особенно актуально зимой).

Принципиальная схема

Для считывания значения заряда используется 3 светодиода:

  • красный загорается, когда напряжение ниже 10,5 В,
  • желтый светится, когда напряжение достигает примерно 10,5–12 В,
  • зеленый с желтым (оба светятся), указывают напряжение между 12 В и 13,8 В.

На фото показан технологический процесс сборки тестера: необходимые элементы, подготовка отверстий, подгонка светодиодов к корпусу, индикация между 12 В и 13,5 В, индикация между 10,5 В и 12 В, индикация ниже 10,5 В.

Список радиодеталей

  • R1, R4 10 кОм
  • R2 470 Ом
  • R3 100 Ом
  • R5 680 Ом
  • D1 red LED
  • D2 green LED
  • D3 orange LED
  • Z1,Z2 6,8V стабилитрон
  • Z3 11V стабилитрон
  • TR1, TR2 транзистор BC548 – BC547 NPN

Еще один красный светодиод необходим, чтобы сигнализировать о перенапряжении 14,4 В. Правильное напряжение в процессе зарядки для авто аккумуляторов составляет 13,9 В — 14,5 В.

С помощью этого тестера вы можете проверить напряжение аккумулятора именно при выключенном двигателе. Если напряжение на аккумуляторе ниже 12 В, это означает что либо генератор плохо заряжает, либо что-то разряжает от аккумулятора при выключенном двигателе.

Прибор измеряет напряжение до 14 В! После превышения этого значения транзисторы и стабилитрон 11 В могут сгореть. Совет: необходимо снабдить схему стабилизатором, предпочтительно 7808, дросселем на блоке питания и LC-фильтром на входе для более точного измерения напряжения.

Другие варианты LED индикаторов напряжения АКБ

Ещё один простой LED тестер АКБ смотрите на сайте Элво. Основной проблемой этих простых индикаторов является отсутствие температурной компенсации и разброса показаний по времени. Вторая проблема — слишком маленькая точность, хотя часто этого и не требуется.

Форум по обсуждению материала LED ТЕСТЕР НАПРЯЖЕНИЯ АККУМУЛЯТОРА

Усилитель мощности звука с двойной термостабилизацией — теория работы схемы и практическое тестирование.

Сборник из 10 конструкций и схем приставок к цифровым мультиметрам, расширяющих функционал измерительных приборов.

Самодельный аккумулятор на 9 В, литий-полимерный, собранный под стандартный корпус типа Крона.

Источник

Светодиодный индикатор напряжения аккумулятора

Как правило, ни одна современная машина, будто то легковой авто, либо грузовик или трактор, либо даже мотоцикл или скутер не обходятся без аккумулятора. Если раньше на него был возложен лишь минимальный набор обязанностей — завести двигатель с помощью стартера и давать напряжение для системы зажигания, то сейчас аккумуляторы питают бортовой компьютер — мозг автомобиля, а потому важно следить за их состоянием и не допускать разряда. Поддерживать нужное напряжение на аккумуляторе важно особенно зимой, и особенно владельцам сельхозтехники, например, тракторов, так как если аккумулятор подсевший, он попросту не сможет провернуть мощный тракторный двигатель. Зимой, когда наступают морозы и аккумулятор охлаждается до сильных минусовых температур, он теряет часть своей мощности и требует периодической подзарядки, особенно это актуально в тех случаях, когда автомобиль не используется в течение 1-2 недель или больше. И если современные авто содержат встроенный вольтметр, который вовремя сообщит о непорядке с аккумулятором, то вот старые авто, особенно трактора и сельхозтехника часто не имеют даже каких-либо индикаторов, а для них поддержание аккумулятора в заряженном состоянии особенно важно — ведь они должны быть готовы к выезду в любое время. Решить эту проблему поможет небольшое электронное устройство, которое с помощью светодиодов покажет, на каком уровне находится напряжение в данный момент, и не требуется ли аккумулятору подзарядка. Индикатор будет содержать три светодиода, каждый из которых будет соответствовать своему уровню заряда аккумулятора. Схема для сборки представлена ниже.

Рассмотрим более подробно некоторые компоненты схемы. Операционный усилитель (А1.1 и А1.2) на схеме — двухканальный, но можно использовать и пару одноканальных усилителей. Например, сюда подойдут TL072, TL082, RC4558, NE5532, либо одноканальные TL071, TL081, все эти микросхемы являются широко распространёнными и есть в наличии практически во всех магазинах радиодеталей. Операционный усилитель на данной схеме работает в роли компаратора — на один из его входов подаётся стабильное опорное напряжение, а напряжение на втором входе зависит от текущего напряжения на аккумуляторе, таким образом, компаратор сравнивает опорное напряжение с напряжением на аккумуляторе и выдаёт на выход либо логическую единицу, либо ноль, в зависимости от того, что больше. Источник опорного напряжения собран на стабилитроне VD1 — здесь можно применить любой стабилитрон с напряжением стабилизации 5,6В — при использовании стабилитрона на другое напряжение сместятся диапазоны показаний индикатора и придётся пересчитывать номиналы резисторов. Резистор R4 служит для ограничения тока через стабилитрон, стабилизированное напряжение снимается с общей точки стабилитрона и резистора. Конечно, источник опорного напряжения на стабилитроне — не самый лучший с точки зрения точности напряжения, однако он наиболее прост и не занимает много места на плате, а сверх-высокая точность в данном индикаторе особо и не нужна. Резисторы R1, R2, R3 образуют делитель, который включается между плюсом измеряемого аккумулятора и минусом, образуя таким образом диапазоны напряжений, при каком напряжении будет загораться тот или иной светодиод. При необходимости их можно подкорректировать под свои нужны, подбирая резисторы с большим или меньшим сопротивлением, либо можно даже поставить подстроечные. Номиналы, обозначенные на схеме, рассчитаны для оптимальных диапазонов индикатора, а потому можно просто собрать с использованием заданных резисторов. Если под рукой нет резистора с нужным сопротивлением, его всегда можно подогнать из имеющихся путём параллельного либо последовательного включения. Конденсатор С1 — фильтрующий по питанию, можно использовать любой электролитический с ёмкостью 10-100 мкФ и напряжением не меньше 16В.

К контактам, на схеме обозначенными как «акб» подключается собственно сам аккумулятор, при подключении нужно строго соблюдать полярность, ведь переполюсовка даже на несколько секунд приведёт к выходу операционных усилителей из строя. Схема не требует внешнего питания и использует для питания сам измеряемый аккумулятор. Ток потребления схемы при этом составит примерно 10-30 мА, а потому её не стоит оставлять всё время подключенной к аккумулятору, ведь это приведёт к его хоть и очень медленному, но всё же разряду. Использование индикатора предполагается с кнопкой без фиксации, которую можно вывести на переднюю панель — при нажатии кнопки загорятся светодиоды и можно будет определить состояние аккумулятора. Светодиоды, для большей наглядности, можно использовать разных цветов, например, красный, зелёный и жёлтый. Если после сборки схемы получилось так, что неактивные светодиоды всё же чуть-чуть засвечиваются, их необходимо зашунтировать резисторами на 1-2 кОм.

Схема собирается на печатной плате, использование резисторов поверхностного монтажа (smd) позволило сделать плату миниатюрных размеров. Все три светодиода запаиваются в ряд, можно использовать любые 3-х вольтовые светодиоды диаметром 3 или 5 мм — при этом их не обязательно устанавливать на плату, можно вывести на проводах и установить в специальных держателях на переднюю панель рядом с кнопкой, например. Для подключения аккумулятора на плате предусмотрены две большие контактные площадки, туда можно установить винтовой клеммник, либо вывести провода. Электролитический конденсатор подпаивается на плату со стороны дорожек, при этом нужно не забывать про его полярность.

Ниже прилагается фотография собранной платы, а также архив с печатной платой, для её открытия потребуется программа Sprint Layout.

Источник

Индикатор напряжения автомобильного аккумулятора

2 – паяльник; припой; монтажные провода; кусачки; пинцет; отвертка, канцелярский нож, дрель, мультиметр, блок питания для настройки.

Собираем следующим образом.

Шаг 1. Берем сгоревшую автомобильную USB зарядку, разбираем ее, Выпаиваем из ее платы все радиодетали.

В одной половинке корпуса зарядки в ее верхней части делаем 3 отверстия под светодиоды, и устанавливаем в них светодиоды, зеленый – в середину. На печатной плате делаем соответствующие отверстия под стабилитроны и резисторы. Лишние печатные дорожки можно удалить канцелярским ножом.

В разрыв провода между катодом светодиода HL1 и резистора R1 ставим переменный резистор 6,8 ком, подключаем питание на вход схемы 10,8 в, и поворачивая движок переменного резистора добиваемся свечения светодиода HL1. затем отключив питание, измеряем общее сопротивление резисторов (R1 и переменного резистора). Ставим постоянный резистор измеренного номинала в схему, удалив из нее переменный резистор.

Настройка светодиода HL1 закончена, так же настраиваем и остальные светодиоды. Для настройки HL2 подаем питание 11.8-12 в. Для настройки HL3 – 15 в. После установки нужных нам резисторов в схему, подаем питание на вход схемы 15в –должны светиться все три светодиода. Убавляем питание до 14 в светодиод HL3 должен погаснуть. При напряжении на входе ниже 11,8 в – должен погаснуть светодиод HL2. А при напряжении ниже 10,8 в должен погаснуть и светодиод HL1. Если это все так, как здесь описано, значит индикатор работает правильно. А если нет, то надо еще точнее подобрать все резисторы.

Источник

Индикатор состояния заряда 12В аккумулятора

Аккумуляторы напряжением 12 В очень популярны (обычно это герметичный свинцово-кислотный аккумулятор емкостью 7 Ач). Я несколько раз пытался создать современный измеритель уровня заряда (SOC) на заказ, который бы отображал уровень напряжения с помощью светодиодов. Однако каждому клиенту требуется своя функциональность от подобного устройства, причем отличия зачастую заключаются в требовании к отображению минимального и максимального значения напряжения.

Если нужно обеспечить подачу звукового предупреждения при достижении низкого уровня напряжения, тогда необходимо проконтролировать три уровня напряжения. При стандартном методе используются потенциометры для регулировки, однако если существует необходимость подачи второго и третьего звукового предупреждения, тогда этот метод становится неприемлемым.

В процессе тестирования выяснилось, что диапазон тока в цепях составляет от 45 мА до 150 мА. Стандартное устройство контроля аккумуляторов на базе LM3914 выполняет разряд батареи емкостью 7 Ач в течение 46 часов.

Цель данного проекта – создать индикатор аккумулятора со следующими компонентами и характеристиками:

  • Светодиодный индикатор
  • Регулируемый максимальный уровень напряжения
  • Регулируемый минимальный уровень напряжения
  • 3 регулируемых уровня порога срабатывания сигнализации (обычно 50%, 30%, 20%)
  • Звуковая сигнализация не должна раздражать и иметь функцию отключения звука
  • Минимальное количество кнопок
  • Низкое энергопотребление.

Для этого проекта я применил микроконтроллер ATmega328P micro.

Шаг 1: Светодиодный индикатор

В проекте используется простой и удобный светодиодный индикатор. Шкальный индикатор имеет 6 светодиодов, которые указывают различный уровень напряжения:

  • Светодиод 6 — 100%
  • Светодиод 5 — 80%
  • Светодиод 4 — 60%
  • Светодиод 3 — 40%
  • Светодиод 2 — 20%
  • Светодиод 1 — 0%

Светодиод 0% программно связан с минимальным уровнем напряжения.
Светодиод 100% программно связан с максимальным уровнем напряжения.

Шкала отображения между 0% и 100% — линейная. При уровне 0% будет светиться только Светодиод 1, и при 100% будут светиться все светодиоды.

Для сохранения энергии светодиодный индикатор не включен постоянно. Для включения индикатора нужно нажать кнопку, причем через 30 секунд произойдет автоматическое отключение индикатора.

Шаг 2: Напряжение и уровни сигнализации

Для точного измерения напряжения необходимо понизить напряжение аккумулятора. Для этой цели используется делитель напряжения, который понижает напряжение до величины 1.1 В с помощью резисторов номиналом 1 мОм и 82 кОм. Поскольку внутренний источник опорного напряжения АЦП настроен на напряжение 1.1 В, то это позволит сравнивать и измерять максимальное напряжение до 14.45 В.

Необходимо проконтролировать 5 уровней напряжения:

  • Максимальный уровень напряжения
  • Минимальный уровень напряжения
  • 1 уровень сигнализации пониженного напряжения
  • 2 уровень сигнализации пониженного напряжения
  • 3 уровень сигнализации пониженного напряжения

Вместо использования потенциометров я решил применить необычный метод. С помощью программной процедуры я занес данные об уровнях напряжения и сохранил различные результаты аналогово-цифрового преобразования в память EEPROM.

Светодиоды индикатора отображают программную последовательность. Для включения светодиодов и входа в режим программирования используется только одна кнопка.

Шаг 3: Звуковая сигнализация

Для подачи звукового сигнала используется стандартная пьезопищалка. Система предусматривает три уровня подачи аварийного звукового сигнала:

  • Сигнализация 1, подает сигнал один раз в течение нескольких секунд. Данный тип звуковой сигнализации может быть отключен.
  • Сигнализация 2, подает сигнал два раза в течение нескольких секунд. Данный тип звуковой сигнализации может быть отключен.
  • Сигнализация 3, подает сигнал три раза в течение нескольких секунд. Данный тип звуковой сигнализации не может быть отключен.

Если звуковая сигнализация выключена, то можно активировать функцию автоматического сброса для повторного включения сигнализации, когда батарея полностью заряжена. Я использовал функцию сброса, которая повторно активирует звуковую сигнализацию, если уровень напряжения аккумулятора превышает 60%.

Шаг 4: Минимальное количество кнопок

Все функции выполняются с помощью одной кнопки.

Индикатор

Нажмите кнопку для включения индикатора. Светодиодный индикатор включится и автоматически отключится через 30 секунд.

Сигнализация

Кнопка позволяет отключить звук в режиме Сигнализация 1 и 2.

Программирование

Для входа в режим программирования нажмите и удерживайте кнопку в течение 5 секунд при подаче питания на устройство.

Шаг 5: Низкое энергопотребление

Существует несколько способов снизить энергопотребление устройства:

Индикатор

Светодиодный индикатор не включен постоянно (его можно включить с помощью кнопки, после чего через 30 секунд произойдет автоматическое отключение). В результате этого можно сэкономить 120 мА.

Напряжение питания микроконтроллера

Микроконтроллер ATmega328P работает от напряжения 5 В и потребляет значительно больше, чем от напряжения 3.3 В. Поэтому я оптимизировал напряжение до уровня 3.3 В с помощью понижающего стабилизатора.

Стабилизатор напряжения

Стандартный стабилизатор 7805 потребляет ток около 20 мА. При использовании ИС 78L05, потребляемый ток составляет 3.5 мА. Однако при использовании LP2950 3.3 В потребляемый ток падает до 0.1 мА.

Подбор тактовой частоты

Судя из даташита ATm ega328P ток потребления можно снизить с 10 мА до 1 мА, выбрав внутренний тактовый генератор на 8 МГц, по сравнению со стандартной частотой 16 МГц.

Я выбрал для проекта тактовую частоту 8 МГц для наилучшего соотношения скорость/производительность. Однако для этого необходимо перепрограммировать регистры конфигурации ATm ega328P , используя AVRDude.

Примечание:
Если вы не хотите менять фьюзы, тогда микроконтроллер будет работать на частоте 16 МГц. Пожалуйста, измените значения delay() и Millis() на фактические значения в мс.

Режим сна

Переводя микроконтроллер AtMega328P в режим сна, вы также сможете сэкономить энергию. В этом режиме большинство микроконтроллеров отключает интерфейсные блоки, что позволяет уменьшить ток потребления до 0.001 мА. Однако в данном режиме микроконтроллер уже не работает, а в нашем случае, не измеряет напряжение.

Сторожевой таймер используется для пробуждения микроконтроллера из режима сна. Настройка таймера на пробуждение микроконтроллера каждый 8 секунд приведет к значительному снижению потребления энергии.

Результаты энергосбережения

При использовании вышеуказанных методик энергопотребление схемы удалось снизить с 80 мА до 0.12 мА, когда устройство находилось в режиме сна. В среднем, схема потребляет 0.28 мА.

Без использования энергосберегающих функций схема разряжает аккумулятор емкостью 7 Ач за, приблизительно, 2.8 дня. При использовании энергосберегающих функций тот же аккумулятор разрядится через 3.5 года.

Шаг 6: Схема

Для разработки печатной платы я использовал бесплатную версию Eagle. Все компоненты, за исключением нажимной кнопки, устанавливаются на печатную плату. Сборка устройства не вызывает проблем, за исключением светодиодов. Их необходимо точно расположить на одинаковом расстоянии.

Поскольку для питания схемы выбрано напряжение 3.3 В, некоторые пьезо пищалки, рассчитанные на напряжение 5 В, не работают. Поэтому пищалку нужно подключить к источнику напряжения 12 В и управлять включением через транзистор. Подберите номинал резистора R6 для получения хорошего звука.

Шаг 7: Калибровка устройства

Для калибровки устройства необходимо использовать источник регулируемого напряжения и мультиметр.

Вход в режим калибровки

— Нажмите и удерживайте кнопку
— Подключите устройство к источнику электропитания
— Через 5 секунд устройство издаст непрерывный звуковой сигнал
— Отпустите кнопку
— Устройство издаст 6 звуковых сигналов (устанавливается максимальное напряжение)
— При этом загорится самый верхний светодиод
— Устройство перешло в режим калибровки. Для выхода из режима отключите питание без нажатия кнопки.
— Отрегулируйте выход источника питания на максимальное выходное напряжение, отображаемое на светодиодном индикаторе (обычно 12.7 В)
— Нажмите кнопку
— Устройство издаст 5 звуковых сигналов (устанавливается минимальное напряжение)
— При этом загорится самый нижний светодиод
— Отрегулируйте выход источника питания на минимальное выходное напряжение, отображаемое на светодиодном индикаторе (обычно 11.8 В)
— Нажмите кнопку
— Устройство издаст 4 звуковых сигнала (установка сигнала аварии Alarm 1)
— При этом будут гореть 4 нижних светодиода
— Отрегулируйте выход источника питания на уровень напряжения Alarm 1 (обычно 12.4 В)
— Нажмите кнопку
— Устройство издаст 3 звуковых сигнала (установка сигнала аварии Alarm 2)
— При этом будут гореть 3 нижних светодиода
— Отрегулируйте выход источника питания на уровень напряжения Alarm 2 (обычно 12.2 В)
— Нажмите кнопку
— Устройство издаст 2 звуковых сигнала (установка сигнала аварии Alarm 3)
— При этом будут гореть 2 нижних светодиода
— Отрегулируйте выход источника питания на уровень напряжения Alarm 3 (обычно 12.0 В)
— Нажмите кнопку
— Далее устройство издаст 1 звуковой сигнал, который означает конец процедуры калибровки. При этом светодиодный индикатор загорится на 30 секунд.

Все запрограммированные значения хранятся в памяти EEPROM, поэтому калибровка проводится только один раз.

Источник

Читайте также:  Аккумуляторы ааа 900 mah
Оцените статью