Гальванические элементы и аккумуляторы — устройство, принцип работы, виды
Маломощные источники электрической энергии
Для питания переносной электро- и радиоаппаратуры применяют гальванические элементы и аккумуляторы.
Гальванические элементы — это источники одноразового действия, аккумуляторы — источники многоразового действия.
Простейший гальванические элемент
Простейший элемент может быть изготовлен из двух полосок: медной и цинковой, погруженных в воду, слегка подкисленную серной кислотой. Если цинк достаточно чист, чтобы быть свободным от местных реакций, никаких заметных изменений не произойдет до тех пор, пока медь и цинк не будут соединены проводом.
Однако полоски имеют разные потенциалы одна по отношению к другой, и когда они будут соединены проводом, в нем появится электрический ток. По мере этого действия цинковая полоска будет постепенно растворяться, а близ медного электрода будут образовываться пузырьки газа, собирающиеся на его поверхности. Этот газ — водород, образующийся из электролита. Электрический ток идет от медной полоски по проводу к цинковой полоске, а от нее через электролит обратно к меди.
Постепенно серная кислота электролита замещается сульфатом цинка, образующимся из растворенной части цинкового электрода. Благодаря этому напряжение элемента уменьшается. Однако еще более сильное падение напряжения вызывается образованием газовых пузырьков на меди. Оба эти действия производят «поляризацию». Подобные элементы не имеют почти никакого практического значения.
Важные параметры гальванических элементов
Величина напряжения, даваемого гальваническими элементами, зависит только от их типа и устройства, т. е. от материала электродов и химического состава электролита, но не зависит от формы и размеров элементов.
Сила тока, которую может давать гальванический элемент, ограничивается его внутренним сопротивлением.
Очень важной характеристикой гальванического элемента является электрическая емкость. Под электрической емкостью подразумевается то количество электричества, которое гальванический или аккумуляторный элемент способен отдать в течение всего времени своей работы, т. е. до наступления окончательного разряда.
Отданная элементом емкость определяется умножением силы разрядного тока, выраженной в амперах, на время в часах, в течение которого разряжался элемент вплоть до наступления полного разряда. Поэтому электрическая емкость выражается всегда в ампер-часах (А х ч).
По величине емкости элемента можно также заранее определить, сколько примерно часов он будет работать до наступления полного разряда. Для этого нужно емкость разделить на допустимую для этого элемента силу разрядного тока.
Однако электрическая емкость не является величиной строго постоянной. Она изменяется в довольно больших пределах в зависимости от условий (режима) работы элемента и конечною разрядного напряжения.
Если элемент разряжать предельной силой тока и притом без перерывов, то он отдаст значительно меньшую емкость. Наоборот, при разряде того же элемента током меньшей силы и с частыми и сравнительно продолжительными перерывами элемент отдаст полную емкость.
Что же касается влияния на емкость элемента конечного разрядного напряжения, то нужно иметь в виду, что в процессе разряда гальванического элемента его рабочее напряжение не остается на одном уровне, а постепенно понижается.
Распространенные виды гальванических элементов
Наиболее распространены гальванические элементы марганцево-цинковой, марганцево-воздушной, воздушно-цинковой и ртутно-цинковой систем с солевым и щелочным электролитами. Сухие марганцево-цинковые элементы с солевым электролитом имеют начальное напряжение от 1,4 до 1,55 В, продолжительность работы при температуре окружающей среды от -20 до -60 о С от 7 ч до 340 ч.
Сухие марганцево-цинковые и воздушно-цинковые элементы со щелочным электролитом имеют напряжение от 0,75 до 0,9 В и продолжительность работы от 6 ч до 45 ч.
Сухие ртутно-цинковые элементы имеют начальное напряжение от 1,22 до 1,25 В и продолжительность работы от 24 ч до 55 ч.
Наибольший гарантийный срок хранения, достигающий 30 месяцев, имеют сухие ртутно-цинковые элементы.
Аккумуляторы — это вторичные гальванические элементы. В отличие от гальванических элементов в аккумуляторе же сразу после сборки никакие химические процессы не возникают.
Чтобы в аккумуляторе начались химические реакции, связанные с движением электрических зарядов, нужно соответствующим образом изменить химический состав его электродов (а частью и электролита). Это изменение химического состава электродов происходит под действием пропускаемого через аккумулятор электрического тока.
Поэтому, чтобы аккумулятор мог давать электрический ток, его предварительно нужно «зарядить» постоянным электрическим током от какого-нибудь постороннего источника тока.
От обычных гальванических элементов аккумуляторы выгодно отличаются также тем, что после разряда они опять могут быть заряжены. При хорошем уходе за ними и при нормальных условиях эксплуатации аккумуляторы выдерживают до нескольких тысяч зарядов и разрядок. Устройство аккумулятора
В настоящее время наиболее часто на практике применяют свинцовые и кадмиево-никелевые аккумуляторы. У первых электролитом служит раствор серной кислоты, а у вторых — раствор щелочей в воде. Свинцовые аккумуляторы называют также кислотными, а кадмиево-никелевые — щелочными.
Принцип работы аккумуляторов основан на поляризации электродов при электролизе. Простейший кислотный аккумулятор устроен следующим образом: это две свинцовые пластины, опущенные в электролит. В результате химической реакции замещения пластины покрываются слабым налетом сернокислого свинца PbSO4, как это следует из формулы Pb + H2SO4 = PbSO4 + Н2.
Устройство кислотного аккумулятора
Такое состояние пластин соответствует разряженному аккумулятору. Если теперь аккумулятор включить на заряд, т. е. подсоединить его к генератору постоянного тока, то в нем вследствие электролиза начнется поляризация пластин. В результате заряда аккумулятора его пластины поляризуются, т. е. изменяют вещество своей поверхности, и из однородных (PbSO4) превращаются в разнородные (Pb и Р b О 2 ).
Аккумулятор становится источником тока, причем положительным электродом у него служит пластина, покрытая двуокисью свинца, а отрицательным — чистая свинцовая пластина.
К концу заряда концентрация электролита повышается вследствие появления в нем дополнительных молекул серной кислоты.
В этом одна из особенностей свинцового аккумулятора: его электролит не остается нейтральным и сам участвует в химических реакциях при работе аккумулятора.
Как зарядить аккумулятор
Существует несколько способов заряда аккумуляторов. Наиболее простой — нормальный заряд аккумулятора, который происходит следующим образом. Вначале на протяжении 5 — 6 ч заряд ведут двойным нормальным током, пока напряжение на каждой аккумуляторной банке не достигнет 2,4 В.
Нормальный зарядный ток определяют по формуле I зар = Q/16
где Q — номинальная емкость аккумулятора, Ач.
После этого зарядный ток уменьшают до нормального значения и продолжают заряд и течение 15 — 18 ч, до появления признаков конца заряда.
Кадмиево-никелевые, или щелочные аккумуляторы, появились значительно позже свинцовых и по сравнению с ними представляют собой более совершенные химические источники тока. Главное преимущество щелочных аккумуляторов перед свинцовыми заключается в химической нейтральности их электролита по отношению к активным массам пластин. Благодаря этому саморазряд у щелочных аккумуляторов получается значительно меньше, чем у свинцовых. Принцип действия щелочных аккумуляторов также основан на поляризации электродов при электролизе.
Для питания радиоаппаратуры выпускают герметичные кадмиево-никелевые аккумуляторы, которые работоспособны при температурах от -30 до +50 о С и выдерживают 400 — 600 циклов заряд-разряд. Эти аккумуляторы выполняют в форме компактных параллелепипедов и дисков с массой от нескольких граммов до килограммов.
Выпускают никель-водородные аккумуляторы для энергоснабжения автономных объектов. Удельная энергия никель-водородного аккумулятора составляет 50 — 60 Вт ч кг -1 .
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Источник
Химия и ток
Какими в будущем станут привычные нам аккумуляторы и другие источники питания
В современной жизни химические источники тока окружают нас повсюду: это батарейки в фонариках, аккумуляторы в мобильных телефонах, водородные топливные элементы, которые уже используются в некоторых автомобилях. Бурное развитие электрохимических технологий может привести к тому, что уже в ближайшее время вместо машин на бензиновых двигателях нас будут окружать только электромобили, телефоны перестанут быстро разряжаться, а в каждом доме будет свой собственный электрогенератор на топливных элементах. Повышению эффективности электрохимических накопителей и генераторов электроэнергии посвящена одна из совместных программ Уральского федерального университета с Институтом высокотемпературной электрохимии УрО РАН, в партнерстве с которыми мы публикуем эту статью.
На сегодняшний день существует множество разных типов батареек, среди которых все сложнее ориентироваться. Далеко не каждому очевидно, чем аккумулятор отличается от суперконденсатора и почему водородный топливный элемент можно использовать, не опасаясь нанести вред окружающей среде. В этой статье мы расскажем о том, как для получения электроэнергии используются химические реакции, в чем разница между основными типами современных химических источников тока и какие перспективы открываются перед электрохимической энергетикой.
Химия как источник электричества
Сначала разберемся, почему химическую энергию вообще можно использовать для получения электричества. Все дело в том, что при окислительно-восстановительных реакциях происходит перенос электронов между двумя разными ионами. Если две половины химической реакции разнести в пространстве, чтобы окисление и восстановление проходили отдельно друг от друга, то можно сделать так, чтобы электрон, который отрывается от одного иона, не сразу попадал на второй, а сначала прошел по заранее заданному для него пути. Такую реакцию можно использовать как источник электрического тока.
Впервые эта концепция была реализована еще в XVIII веке итальянским физиологом Луиджи Гальвани. Действие традиционного гальванического элемента основано на реакциях восстановления и окисления металлов с разной активностью. Например, классической ячейкой является гальванический элемент, в котором происходит окисление цинка и восстановление меди. Реакции восстановления и окисления проходят, соответственно, на катоде и аноде. А чтобы ионы меди и цинка не попадали на «чужую территорию», где они могут прореагировать друг с другом непосредственно, между анодом и катодом обычно помещают специальную мембрану. В результате между электродами возникает разность потенциалов. Если соединить электроды, например, с лампочкой, то в получившейся электрической цепи начинает течь ток и лампочка загорается.
Схема гальванического элемента
Основным недостатком гальванического элемента является ограниченное время его работы. Как только реакция пройдет до конца (то есть будет полностью израсходован весь постепенно растворяющийся анод), такой элемент просто перестанет работать.
Пальчиковые щелочные батарейки
Возможность перезарядки
Первым шагом к расширению возможностей химических источников тока стало создание аккумулятора — источника тока, который можно перезаряжать и поэтому использовать многократно. Для этого ученые просто предложили использовать обратимые химические реакции. Полностью разрядив аккумулятор в первый раз, с помощью внешнего источника тока прошедшую в нем реакцию можно запустить в обратном направлении. Это восстановит исходное состояние, так что после перезарядки батарею можно будет использовать заново.
Автомобильный свинцово-кислотный аккумулятор
Литий-ионный аккумулятор для мобильного телефона
Твердый электролит
В качестве другого менее очевидного способа повышения эффективности и безопасности батарей, химики предложили не ограничиваться в химических источниках тока жидкими электролитами, а создать полностью твердотельный источник тока. В таких устройствах вообще нет жидких компонентов, а есть слоистая структура из твердого анода, твердого катода и твердого же электролита между ними. Электролит при этом одновременно выполняет и функцию мембраны. Носителями заряда в твердом электролите могут быть различные ионы — в зависимости от его состава и тех реакций, которые проходят на аноде и катоде. Но всегда ими являются достаточно маленькие ионы, которые могут относительно свободно перемещаться по кристаллу, например протоны H + , ионы лития Li + или ионы кислорода O 2- .
Водородные топливные элементы
Возможность перезарядки и специальные меры безопасности делают аккумуляторы значительно более перспективными источниками тока, чем обычные батарейки, но все равно каждый аккумулятор содержит внутри себя ограниченное количество реагентов, а значит, и ограниченный запас энергии, и каждый раз аккумулятор необходимо заново заряжать для возобновления его работоспособности.
Чтобы сделать батарейку «бесконечной», в качестве источника энергии можно использовать не те вещества, которые находятся внутри ячейки, а специально прокачиваемое через нее топливо. Лучше всего в качестве такого топлива подойдет вещество, максимально простое по составу, экологически чистое и имеющееся в достатке на Земле.
Наиболее подходящее вещество такого типа — газообразный водород. Его окисление кислородом воздуха с образованием воды (по реакции 2H2 + O2 → 2H2O) является простой окислительно-восстановительной реакцией, а транспорт электронов между ионами тоже можно использовать в качестве источника тока. Протекающая при этом реакция является своего рода обратной реакцией к реакции электролиза воды (при котором под действием электрического тока вода разлагается на кислород и водород), и впервые такая схема была предложена еще в середине XIX века.
Но несмотря на то, что схема выглядит довольно простой, создать основанное на этом принципе эффективно работающее устройство — совсем не тривиальная задача. Для этого надо развести в пространстве потоки кислорода и водорода, обеспечить транспорт нужных ионов через электролит и снизить возможные потери энергии на всех этапах работы.
Принципиальная схема работы водородного топливного элемента
Водородный топливный элемент Toyota
Joseph Brent / flickr
Кроме реакции окисления водорода для топливных элементов предложено использовать и другие типы реакций. Например, вместо водорода восстановительным топливом может быть метанол, который кислородом окисляется до углекислого газа и воды.
Эффективность топливных элементов
Несмотря на все преимущества водородных топливных элементов (такие как экологичность, практически неограниченный КПД, компактность размеров и высокая энергоемкость), они обладают и рядом недостатков. К ним относятся, в первую очередь, постепенное старение компонентов и сложности при хранении водорода. Именно над тем, как устранить эти недостатки, и работают сегодня ученые.
Повысить эффективность топливных элементов в настоящее время предлагается за счет изменения состава электролита, свойств электрода-катализатора, и геометрии системы (которая обеспечивает подачу топливных газов в нужную точку и снижает побочные эффекты). Для решения проблемы хранения газообразного водорода используют материалы, содержащие платину, для насыщения которых предлагают использовать, например, графеновые мембраны.
В результате удается добиться повышения стабильности работы топливного элемента и времени жизни его отдельных компонентов. Сейчас коэффициент преобразования химической энергии в электрическую в таких элементах достигает 80 процентов, а при определенных условиях может быть и еще выше.
Огромные перспективы водородной энергетики связывают с возможностью объединения топливных элементов в целые батареи, превращая их в электрогенераторы с большой мощностью. Уже сейчас электрогенераторы, работающие на водородных топливных элементах, имеют мощность до нескольких сотен киловатт и используются как источники питания транспортных средств.
Альтернативные электрохимические накопители
Помимо классических электрохимических источников тока, в качестве накопителей электроэнергии используют и более необычные системы. Одной из таких систем является суперконденсатор (или ионистор) — устройство, в котором разделение и накопление заряда происходит за счет образования двойного слоя вблизи заряженной поверхности. На границе электрод-электролит в таком устройстве в два слоя выстраиваются ионы разных знаков, так называемый «двойной электрический слой», образуя своеобразный очень тонкий конденсатор. Емкость такого конденсатора, то есть количество накопленного заряда, будет определяться удельной площадью поверхности электродного материала, поэтому в качестве материала для суперконденсаторов выгодно брать пористые материалы с максимальной удельной площадью поверхности.
Ионисторы являются рекордсменами среди зарядно-разрядных химических источников тока по скорости заряда, что является несомненным преимуществом данного типа устройств. К сожалению, они также являются рекордсменами и по скорости разряда. Энергоплотность ионисторов в восемь раз меньше по сравнению со свинцовыми аккумуляторами и в 25 раз меньше по сравнению с литий-ионными. Классические «двойнослойные» ионисторы не используют электрохимическую реакцию в своей основе, и к ним наиболее точно применим термин «конденсатор». Однако в тех вариантах исполнения ионисторов, в основе которых используется электрохимическая реакция и накопление заряда распространяется в глубину электрода, удается достичь более высоких времен разрядки при сохранении быстрой скорости заряда. Усилия разработчиков суперконденсаторов направлены на создание гибридных с аккумуляторами устройств, сочетающих в себе плюсы суперконденсаторов, в первую очередь высокую скорость заряда, и достоинства аккумуляторов — высокую энергоемкость и длительное время разряда. Представьте себе в ближайшем будущем аккумулятор-ионистор, который будет заряжаться за пару минут и обеспечивать работу ноутбука или смартфона в течение суток или более!
Несмотря на то, что сейчас плотность энергии суперконденсаторов пока в несколько раз меньше плотности энергии аккумуляторов, их используют в бытовой электронике и для двигателей различных транспортных средств, в том числе и в самых современных разработках.
Таким образом, на сегодня существует большое количество электрохимических устройств, каждое из которых перспективно для своих конкретных приложений. Для повышения эффективности работы этих устройств ученым необходимо решить ряд задач как фундаментального, так и технологического характера. Большинством этих задач в рамках одного из прорывных проектов занимаются в Уральском федеральном университете, поэтому о ближайших планах и перспективах по разработке современных топливных элементов мы попросили рассказать директора Института высокотемпературной электрохимии УрО РАН, профессора кафедры технологии электрохимических производств химико-технологического института Уральского федерального университета Максима Ананьева.
N + 1: Ожидается ли в ближайшем будущем какая-то альтернатива наиболее популярным сейчас литий-ионным аккумуляторам?
Максим Ананьев: Современные усилия разработчиков аккумуляторов направлены на замену типа носителя заряда в электролите с лития на натрий, калий, алюминий. В результате замены лития можно будет снизить стоимость аккумулятора, правда при этом пропорционально возрастут массо-габаритные характеристики. Иными словами, при одинаковых электрических характеристиках натрий-ионный аккумулятор будет больше и тяжелее по сравнению с литий-ионным.
Кроме того, одним из перспективных развивающихся направлений совершенствования аккумуляторов является создание гибридных химических источников энергии, основанных на совмещении металл-ионных аккумуляторов с воздушным электродом, как в топливных элементах. В целом, направление создания гибридных систем, как уже было показано на примере суперконденсаторов, по-видимому, в ближайшей перспективе позволит увидеть на рынке химические источники энергии, обладающие высокими потребительскими характеристиками.
Уральский федеральный университет совместно с академическими и индустриальными партнерами России и мира сегодня реализует шесть мегапроектов, которые сфокусированы на прорывных направлениях научных исследований. Один из таких проектов — «Перспективные технологии электрохимической энергетики от химического дизайна новых материалов к электрохимическим устройствам нового поколения для сохранения и преобразования энергии».
Группа ученых стратегической академической единицы (САЕ) Школа естественных наук и математики УрФУ, в которую входит Максим Ананьев, занимается проектированием и разработкой новых материалов и технологий, среди которых — топливные элементы, электролитические ячейки, металлграфеновые аккумуляторы, электрохимические системы аккумулирования электроэнергии и суперконденсаторы.
Исследования и научная работа ведутся в постоянном взаимодействии с Институтом высокотемпературной электрохимии УрО РАН и при поддержке партнеров.
Какие топливные элементы разрабатываются сейчас и имеют наибольший потенциал?
Одними из наиболее перспективных типов топливных элементов являются протонно-керамические элементы. Они обладают преимуществами перед полимерными топливными элементами с протонно-обменной мембраной и твердооксидными элементами, так как могут работать при прямой подаче углеводородного топлива. Это существенно упрощает конструкцию энергоустановки на основе протонно-керамических топливных элементов и систему управления, а следовательно, увеличивает надежность работы. Правда, такой тип топливных элементов на данный момент является исторически менее проработанным, но современные научные исследования позволяют надеяться на высокий потенциал данной технологии в будущем.
Какими проблемами, связанными с топливными элементами, занимаются сейчас в Уральском федеральном университете?
Сейчас ученые УрФУ совместно с Институтом высокотемпературной электрохимии (ИВТЭ) Уральского отделения Российской академии наук работают над созданием высокоэффективных электрохимических устройств и автономных генераторов электроэнергии для применений в распределенной энергетике. Создание энергоустановок для распределенной энергетики изначально подразумевает разработку гибридных систем на основе генератора электроэнергии и накопителя, в качестве которых выступают аккумуляторы. При этом топливный элемент работает постоянно, обеспечивая нагрузку в пиковые часы, а в холостом режиме заряжает аккумулятор, который может сам выступать резервом как в случае высокого энергопотребления, так и в случае внештатных ситуаций.
Наибольших успехов химики УрФУ и ИВТЭ достигли в области разработки твердо-оксидных и протонно-керамических топливных элементов. Начиная с 2016 года на Урале вместе с ГК «Росатом» создается первое в России производство энергоустановок на основе твердо-оксидных топливных элементов. Разработка уральских ученых уже прошла «натурные» испытания на станции катодной защиты газотрубопроводов на экспериментальной площадке ООО «Уралтрансгаз». Энергоустановка с номинальной мощностью 1,5 киловатта отработала более 10 тысяч часов и показала высокий потенциал применения таких устройств.
В рамках совместной лаборатории УрФУ и ИВТЭ ведутся разработки электрохимических устройств на основе протонпроводящей керамической мембраны. Это позволит в ближайшем будущем снизить рабочие температуры для твердо-оксидных топливных элементов с 900 до 500 градусов Цельсия и отказаться от предварительного риформинга углеводородного топлива, создав, таким образом, экономически эффективные электрохимические генераторы, способные работать в условиях развитой в России инфраструктуры газоснабжения.
Источник