- Предназначение, виды, схема подключения и цена инвертора для ветрогенератора
- Предназначение
- Классификация
- Правила подбора мощности
- Какой преобразователь напряжения купить: производители и цены
- Сетевой грид инвертор (Grid-tie инвертор) в солнечной и ветряной электростанции.
- Грид инвертор для ветрогенератора
- Как работает грид инвертор и почему он эффективней гибридных систем
- Сетевой инвертор (grid- inverter).
Предназначение, виды, схема подключения и цена инвертора для ветрогенератора
Зеленая энергетика — это тренд будущего. Получать электричество из возобновляемых источников энергии не только полезно для экологии, но и выгодно для человека. И один из таких способов — установка ветрогенератора.
Однако одной установки ветряка зачастую недостаточно. Ведь стандартные сети рассчитаны на 220 В переменного тока, а ветрогенератор не может вырабатывает такую мощность в постоянном режиме. Для получения нужных характеристик тока вам потребуется инвертор, и именно о нем пойдет речь в данной статье.
Предназначение
Для начала нужно понять, что такое инвертор и для чего он нужен. Инвертор — это электротехническое устройство, которое преобразует постоянный ток в переменный, при этом может выдавать напряжение необходимое для обеспечения местной сети.
Теперь рассмотрим место данного устройство в цепочке системы автономного питания дома от ветряного генератора.
- Первое — сам ветряк, он вырабатывает постоянный ток при вращении лопастей.
- Второй элемент — выпрямитель тока.
- Третий — аккумуляторные батареи.
- Наконец, последний — инвертор. Он задает току приемлемые характеристики, которые подходят для работы бытовых приборов в домашней сети.
Также устройство выполняет ряд задач:
- Преобразует постоянный ток в переменный.
- Выравнивает напряжение сети до 220 В 50 Гц.
- Работает как источник бесперебойного питания. Может переключать питание бытовых приборов на аккумулятор и обратно при отключении сети 220В и её «появлении».
- Может автоматически заряжать аккумуляторы.
Таким образом, инвертор становится одним из главных компонентов системы бесперебойного питания дома.
Энергия от ветра или солнца может накапливаться в аккумуляторных батареях, а при необходимости будет подана в сеть. При этом инвертор может получать энергию и от обычной городской сети. Отсюда появляется два вида устройств, которые могут по-разному работать и распределять сетевую нагрузку:
- Обычный инвертор. Работает с источниками постоянного и переменного тока, при этом выбирается приоритет по одному источнику питания.
- Гибридный инвертор. Это устройство, которое может работать параллельно с источником переменного тока, одновременно питая нагрузку от аккумуляторов и от сети, и имеет функцию приоритета для источника постоянного тока.
Получается, что основное отличие гибридного инвертора заключается именно в том, что он способен работать параллельной с любым источником переменного тока — сетью или генератором. При этом он будет брать энергию от аккумуляторных батарей, которые заряжаются от возобновляемого источника энергии, одновременно питаясь энергии сети или генератора.
Некоторые производители предлагают потребителям, заинтересованным в выборе гибридного типа устройства, инверторы, которые включают в себя контроллеры для заряда АКБ разных источников постоянного тока — ветряного генератора или солнечной батареи. Однако подобные аппараты корректнее назвать «комбинированными», а не гибридными.
Классификация
Среди инверторов различают:
- Сетевые. Преобразовывают постоянный ток в переменный 220 В 50Гц. В общей системе электрификации дома работают без накопителей энергии (аккумуляторных батарей). При недостаточной генерации электричества, переключаются на питание от городской сети. При переработке энергии могут отдавать ее обратно в сеть.
- Автономные устройства. Так же как и сетевые перерабатывают постоянный ток в переменный. При этом их подключают к аккумуляторным накопителям, и когда происходит нехватка возобновляемой энергии — включается питание от батарей.
Данные инверторы могут выдавать обычную и модифицированную синусойду переменного тока. Устройства с модифицированной синусойдой стоят много больше, так как они способны питать разные бытовые приборы без вероятности их поломки.
Раньше избыток производимого электричества от ветряных генераторов или солнечных панелей необходимо было «выпускать» в защитные электрические потребители. Например, излишки электричества от ветряков пускали на обогрев водяных тенов, чтобы снять нагрузку с мотора генератора. С 6 февраля 2019 года все избытки электроэнергии можно продать государству на договорной основе. Обзор конструкций и схема подключения
Рассмотрим более подробно принцип работы инвертора с синусоидальной формой выходного напряжения.
Предварительный высокочастотный преобразователь изменяет напряжение постоянного тока, делая его очень похожим значению амплитуде синусойды выходного напряжения инвертора. Дальше с помощью мостового инвертора постоянный ток преобразуется в переменный, также близким по своим параметрам к синусоидальному. Это делается при помощи принципа «многократной широтно-импульсной модуляции» (ШИМ).
Причём длительность этих высокочастотных импульсов коммутации изменяется по синусоидальному закону. Затем с помощью высокочастотного фильтра нижних частот выделяется синусоидальная составляющая выходного напряжения инвертора.
Схема работы мостового инвертора напряжения с трансформатором:
Теперь рассмотрим схемы коммутации инвертора в сетевом и автономном варианте.
Вариант подключения инвертора без использования городской или иной сети. В данной схеме электричество получают из работы ветряного генератора или из запасов аккумуляторных батарей:
Данная схема позволяет получать электроэнергию как от ветряной установки, так и от АКБ и городской сети. При таком виде коммутации можно использовать обычные или гибридные инверторы:
Правила подбора мощности
Несмотря на то, что все вместе они работать не будут, расчет производят именно из суммы показателей всех потребителей в один момент.
- Лучше всего составить подробную таблицу всех электроприборов в два столбца. В первом столбце написать название прибора, во втором — его мощность.
- После этого нужно найти сумму значение данных по второму столбцу и к полученному результату прибавить еще 25%. Получится мощность пиковой нагрузки, которую сможет выдать инвертор в при стационарной работе.
- Если вы планируете использовать инвертор к генератору в автономной работе как АКБ, тогда для расчета нужно умножить полученный результат на необходимое количество часов автономной работы.
Приведем пример. В доме есть 5 основных потребителей энергии:
- световые приборы 200 Вт;
- холодильник 300 Вт;
- телевизор 160 Вт;
- ноутбук 340 Вт;
- электрочайник 1100 Вт.
Суммарное значение равняется 2100 Вт, с учетом пиковой нагрузки 2,6 Квт. Если вы рассчитываете использовать инвертор в качестве АКБ, нужно перемножить полученные результаты на количество часов бесперебойной работы.
При подсчете мощности инвертора в автономной работе лучше брать значения потребления не всех устройств разом, а только тех, кто будет работать постоянно. Например: осветительные приборы, холодильник и ноутбук.
Какой преобразователь напряжения купить: производители и цены
Рынок инверторов довольно насыщен. Можно выбрать устройство под любые задачи и цели. На отечественном рынке популярностью пользуются как российские, так и зарубежные аналоги.
Рассмотрим стоимость инверторов от разных производителей:
- Швейцария. «Xtender XTH/XTM/XTS». Цена: от 75 000 до 90 000 рублей.
- Германия. «Sunny Island 5048». Цена: 240 000 рублей.
- Германия. «Schnieder Electric Conext серии XW+». Цена от 240 000 до 500 000 рублей.
- Китай. «Prosolar PV Hybrid». Цена от 80 000 рублей.
- Россия. «МАП «Энергия» SIN». Цена от 35 000 рублей.
Стоимость инвертора зависит от его типа, мощности, а также систем защиты и страны производителя.
Если вы хотите получать зеленую энергию без сбоев и поломок оборудования — обязательно уделите должное внимание выбору инвертора. Он способен не только защитить приборы от нестабильной работы сети, но и выступить в качестве АКБ. Внимательно рассчитывайте потребление приборов, а также пиковую нагрузку потребления. Отдавайте предпочтение моделям с модифицированной синусойдой. Так вы обезопасите все электрические приборы у себя в доме.
Источник
Сетевой грид инвертор (Grid-tie инвертор) в солнечной и ветряной электростанции.
Долго думал и взвешивал все «за» и «против» для установки сетевого грид инвертора (Grid-tie инвертор) в свою ветряную автономную электростанцию. Про неё расписывать не буду, кому интересно можете почитать эту тему по этой ссылке: http://ukosterka.ru/forum/thread4637-1.html .
Что такое Grid-tie инвертор можно почитать в сети интернет, там сейчас полно инфы и описаний от альтернативщиков.
Короче заказал я себе модель грид инвертора SYADJ-500 (500 Ватт) (полное название SOYOSOURCE ADJ-500W) из Китая, с Алиэкспресс. Сейчас мой грид проходит таможенную очистку на нашей таможне. Двигается в моём направлении очень шустро.
Вот картинки этого грида со страницы товара продавца на Али, там же и полное его описание с инструкцией:
Фишка в том, что в отличии от подобных моделей, к этому грид инвертору можно подключить не только солнечные панели, но и обычный аккумулятор который имеется в любой альтернативной электростанции. Подключение к аккумулятору 12 вольт он распознаёт автоматически.
Похоже эта модель пока единственная в своём роде, которую продают на Алиэкспресс. Ко всем остальным подобным моделям подключается только солнечные панели или ветряк, с аккумулятором они работать не могут. Так что жду этот девайс с нетерпением, очень хочется его встроить в свою ветряную систему (к аккумулятору), и посмотреть все его прелести работы.
Кому интересен этот грид инвертор, вот ссылка для его заказа, я сам заказывал у этого продавца: Сетевой Grid-tie инвертор SYADJ-500 (500 Ватт).
Продолжение следует .
Источник
Грид инвертор для ветрогенератора
Как работает грид инвертор и почему он эффективней гибридных систем
Странно, что у нас до сих пор многие задаются вопросом что же эффективней грид инвертор, который лимитируя сеть отдает мощность с солнечных. С гибридными инверторами, которые работают с АКБ. Однозначно на эти вопросы ответить нельзя, но только для России где нет зеленого тарифа, а есть черный цена копейка. Поэтому давайте разбираться ибо всегда есть определенные условия когда и грид в России будут эффективен, и вполне себе неплохо работать и без зеленого тарифа. Чтобы понять когда эта система будет максимально выгодно, нужно сделать перерасчет вашего потребления в месяц, перевести кВт в рубли, умножить на 12 месяцев и умножить на 4 года.
При этом нужно учитывать только пять часов, которые вы сможете закрывать от солнца, значит делаем поправку на минус 5 часов, а не на 24 часа. Если за 4 года стоимость оборудования будет ноль, эта система вам подходит и будет достаточно эффективно служить вам.
Но в последнее время появляется очень много ограничений на потребляемую мощность и вот тут-то такие грид системы станут просто не окупаемы для людей с большими потребителями. Ибо тариф будет уже ого-го при, например, дневном потреблении около 20 кВт. Особенно в зимнее время. Вот именно в таких вопросах, лучший выход будет систем с резервированием мощности. Где мы пользуемся тем что накопили в АКБ+солнце, если оно есть. Это принцип работы современных гибридных систем.
Но в плане стоимости и в плане окупаемости оборудования, грид система более дешевая чем гибридная с резервированием, а значит и дольше окупаемо. Раньше время окупаемости гибридных систем составляло от 7 до 10 лет. Если при просчетах выше вы вписываетесь в эти сроки, значит система посчитана правильно, и ваши потребители имеют нужную мощность для окупаемости системы.
Что такое окупаемость за счет потребителей. Все очень просто. Если у вас светодиодная лампочка, которая потребляет 3 ватта в час, за 24 часа она потребляет 72 часа, то оборудование которое необходимо купить и установить ее резервируемое время работы составит по окупаемости лет 100, если не больше, поэтому от потребителей зависит не только какой мощности будет ваша система, но и как долго она будет окупаться.
Поэтому что вам нужно конкретно вы должны решить на начальном этапе, иначе каждый лишний шаг — это трата ваших средств в пустую.
Источник
Сетевой инвертор (grid- inverter).
Сетевыми инверторами являются устройства, преобразующими постоянное напряжение от солнечных батарей в переменное напряжение, и передающие его напрямую в сеть 220В(380В), тем самым снижая потребление электроэнергии от энергосетей. Сетевые инверторы также называют синхронными преобразователями так как они обладают одной особенностью – наличием синхронизации напряжения и тока со стационарной сетью. Таким образом, сетевой инвертор осуществляет преобразование постоянного тока от солнечных модулей и других возобновляемых источников энергии в переменный (с надлежащими значениями частоты и фазы для сопряжения со стационарной сетью). Как правило, преобразование осуществляется с помощью PWM — широтно-импульсной модуляции. Инверторы сетевого типа не имеют возможности подключения к ним аккумуляторных батарей. Также они не смогут работать в доме, в котором пропало электричество, к примеру, по причине аварии в электросети. Сделано это для того, чтобы обезопасить от поражения электрическим током персонал, который будет заниматься восстановлением линий электропередач. Т.е. если Вам нужно, чтобы при аварийном отключении электроэнергии Ваши потребители работали от фотомодулей, то Вам нужен сетевой инвертор с резервированием. Получается, что: Сетевые инверторы (без резервирования) лучше использовать в тех случаях, где есть стабильное бесперебойное энергоснабжение и когда планируется подключение «Зеленого» тарифа, или же для экономии на электричестве путем выработки своего собственного для своих потребителей. Проще говоря, сетевой инвертор берет электроэнергию, выработанную фотомодулями, и передает ее Вашим потребителям. Если Ваше потребление меньше, чем вырабатывают Ваши фотомодули, то излишки (непотребленной) электроэнергии будут отдаваться во внешнюю сеть. Будет ли эта передача непотребленной электроэнергии платной или бесплатной для Вас, зависит от того, подключен у Вас «Зеленый» тариф или нет. Эффективность преобразования инверторов составляет 96%.
Основные характеристики сетевых инверторов
· номинальная выходная мощность – мощность, получаемая от данного инвертора.
· выходное напряжение – показатель, определяющий к какой сети по напряжению может быть подключен инвертор.
· Для небольших инверторов (бытового назначения) выходное напряжение обычно равно 240В. Инверторы для промышленного назначения рассчитаны на 208, 240, 277, 400 или 480В, кроме того их можно подключать к 3-х фазной сети.
· максимальная эффективность — наивысшая эффективность преобразования энергии, которую может обеспечить инвертор. Максимальный КПД большинства сетевых инверторов составляет более 94%, у некоторых — до 97%.
· взвешенная эффективность- средняя эффективность инвертора, этот показатель лучше характеризует эффективность работы инвертора. Этот показатель важен, так как инверторы, способные преобразовывать энергию при различных выходных напряжениях переменного тока, имеют разную эффективность при каждом значении напряжения.
· максимальный входной ток — максимальное количество постоянного тока, которое может преобразовывать инвертор. В случае если какой-либо возобновляемый источник (например, солнечная панель) будет производить ток, превышающий это значение, сетевой инвертор его не использует.
· максимальный выходной ток — максимальный непрерывный переменный ток, производимый инвертором. Этот показатель используют для определения минимального (номинального) значения перегрузки по току устройств защиты (к примеру, выключателей или предохранителей).
· диапазон отслеживания напряжения максимальной мощности — диапазон напряжения постоянного тока, в котором будет работать точка максимальной мощности сетевого инвертора.
· минимальное входное напряжение — минимальное напряжение, необходимое для включения инвертора и его работы. Этот показатель особенно важен для солнечных систем, так как разработчик системы должен быть уверен, что для произведения этого напряжения в каждой цепочке последовательно соединено достаточное количество солнечных модулей.
· степень защиты IP (или код исполнения) – характеризует степень защиты корпуса от проникновения внешних твердых предметов (первая цифра), а также воды (вторая цифра).
Принципиальная схема грид-инвертора представлена на рис.1. Синусоидальное напряжение через резистор R3 поступает к узлу синхронизации, выполненному на сдвоенном оптроне U1.
При положительной полуволне ток протекает через светодиод оптрона U1.2 и транзистор этого оптрона открыт, поэтому на тактовом входе (выв.3) DD1.1 низкий уровень напряжения.
При отрицательной полуволне сетевого напряжения открыт транзистор оптрона U1.1 и тактовом входе DD1.1 также низкий уровень. Но в моменты, когда сетевое напряжение переходит через нуль, оба светодиода выключены, транзисторы оптронов закрыты, а тактовом входе DD1.1 на короткие отрезки времени появляются уровень 1. В результате этого уровень 1 появляется на тактовом входе DD1.1 только в момент перехода через нуль сетевого напряжения. Эти импульсы с частотой 100 Гц приходят на делитель на 2, выполненный на D-триггере DD1.1. а также на выв.2 DD3.1 и выв.13 DD3.2. От длительности импульса зависит величина зазора между включением силовых ключей. Это необходимо для того, чтобы силовые ключи не оказались одновременно открытыми, что опасно протеканием через них сквозных токов.
Выходной сигнал с частотой 50 Гц поступает на логические элементы 3И-НЕ DD3.1-DD3.2. Прямой выход D-триггера (выв.1) соединен с выв.8 DD3.1, а инверсный выход D-триггера (выв.2) соединен с выв.11 DD3.2. Задающий генератор выполнен на основе 3х инверторов, причем могут быть использованы остающиеся в корпусах микросхемы логические элементы. Этот генератор малочувствителен к изменениям напряжения питания, благодаря пороговому напряжению близкому к 50% от напряжения питания. Широтно-импульсный модулятор построен на микросхеме DD2 и инверторе DD3. Микросхема DD2 содержит два инвертора и полевые (р-канальные и n-канальные) транзисторы. Западный аналог этой микросхемы-CD4007. Выходное сопротивление этих транзисторов почти линейно зависит от входного напряжения. Полевые транзисторы включены через диоды VD3-VD4 параллельно резистору R7. При высоком уровне на выходе генератора диод VD3 может проводить, т.е. выходное сопротивление р-канала включено параллельно с резистором R7. Подобным образом выходное сопротивление n-канала включается параллельно резистору R7 при низком уровне на выходе генератора. Широтно-импульсный модулятор реализуется изменением скважности импульсов генератора в соответствии с входным напряжением. Само изменение частоты колебаний минимально зависит от скважности, т.к. выходное сопротивление одного транзистора возрастает, а другого всегда уменьшается при любой величине управляющего напряжения. Таким образом, среднее за период значение шунтирующего резистор R7 сопротивления остается постоянным. Увеличение управляющего напряжения, поступающего на модулятор, приводит к увеличению длительности выходных импульсов. Уменьшение управляющего напряжения соответственно к уменьшению длительности импульсов выходного сигнала. Частота колебаний остается неизменной. Данный генератор может генерировать сигнал до 10МГц. Широтно-импульсный модулятор реализуется изменением скважности импульсов генератора в соответствии с входным напряжением, поступающим с выпрямителя VD1. Частота колебаний генератора равна 2кГц. Уровень входного модулирующего напряжения можно регулировать с помощью построечного резистора R2. Это напряжение представляет собой положительные полуволны синусоидального напряжения частотой 100Гц. Как правило, в инверторах для получения широтно-импульсной модуляции используются микропроцессоры. Мне хотелось решить эту задачу аппаратным способом. Проблема заключается в том, что широтно-импульсную модуляцию необходимо менять на каждом полупериоде синусоидального напряжения. Преобразователь выполнен по схеме полного моста, выполненного на четырех транзисторах VT3-VT6. Синусоидальный выходной сигнал формируется методом широтно-импульсной модуляции. Управляется мост двумя высокочастотными драйверами IR2110, способными перезаряжать затворы полевых транзисторов током до 2х ампер. Входное напряжение для этих драйверов должно находиться в пределах 10-15В. При снижении напряжения ниже 10В драйвер отказывается работать, так как он имеет встроенную схему контроля питающего напряжения. Повышение напряжения выше 15В приводит к выходу из строя драйверов или затворов полевых транзисторов. Максимальное напряжение между затвором и истоком 20В. Драйверы DA1,DA2 имеют вход SD, при подаче на него сигнала высокого уровня они запираются, и преобразователь не работает. Это можно использовать для защиты преобразователя от перегрузки. Мощность преобразователя зависит от типа примененных полевых транзисторов. Полевые транзисторы, а также транзисторы IGBT можно ставить параллельно для увеличения мощности преобразователя.
На рис.2 представлены временные диаграммы сигналов в определенных точках преобразователя, где:
1 — входной сигнал с вторичной обмотки трансформатора питания.
2 — выходной сигнал синхронизатора.
3 — выходной сигнал делителя на 2 (DD1.1) вывод 1.
4 — инверсный выходной сигнал делителя на 2 (DD1.1) вывод 2.
5 — результат сложения прямого сигнала делителя на 2 и выходного сигнала синхронизатора.
6 — результат сложения инверсного сигнала делителя на 2 и выходного сигнала синхронизатора.
7- выходной сигнал логического элемента DD3.1 без
высокочастотного заполнения с широтно-импульсного модулятора.
8 — выходной сигнал логического элемента DD3.2 без высокочастотного заполнения с широтно-импульсного модулятора
9 — выходной сигнал логического элемента DD3.1 с высокочастотным заполнением с широтно-импульсного модулятора. 10- выходной сигнал логического элемента DD3.2 с высокочастотным заполнением с широтно-импульсного модулятора.
11 — сигнал на первичной обмотке трансформатора TV1.
Теперь, что касается выработки электроэнергии. Вся энергия вырабатываемая солнечными панелями в реальном времени попадает в сеть. Если в доме есть потребители этой энергии, то она вся будет израсходована, а счетчик на вводе в дом «крутиться» не будет. Если же моментальная выработка электроэнергии превысит потребляемую в данный момент, то вся энергия будет передана обратно в сеть. То есть счетчик будет «крутиться» в обратную сторону. Но тут есть нюансы. Во-первых, многие современные электронные счетчики считают проходящий через них ток без учета его направления (то есть вы будете платить за отдаваемую обратно в сеть электроэнергию). А во-вторых, российское законодательство не разрешает частным лицам продавать электроэнергию. Такое разрешено в Европе и именно поэтому там каждый второй дом обвешан солнечными панелями, что в совокупности с высокими сетевыми тарифами позволяет действительно экономить. Что делать в России? Не ставить солнечные панели, которые могут выработать энергии больше, чем текущее дневное энергопотребление в доме.
Обычно выпускаются инверторы рассчитанные на 12 В или на 24 В или на 48 В. Очень редко можно встретить модели на 96 В, т.к. такое напряжение уже считается опасным. 12 В можно встретить в бортовой сети автомобиля, 24 В — в автобусах и на яхтах. Конечно, любое из этих напряжений может использоваться с инвертором, для бесперебойного питания части электрооборудования дома, или всего дома. Однако низкое напряжение не позволяет технически получить большую мощность. Так, например, из 12-и вольт невозможно получить мощность более 3-х кВт, из 24 –х вольт – более 9 кВт, а из 48-и В – более 18 кВт. Понятно, что высокочастотные инверторы обычно делаются на 12 В и мощностью до 3-х кВт (и рассчитаны они на применение в автомобилях), а мощные низкочастотные инверторы обычно представлены моделями на 24 или 48 В с мощностью от 3 кВт и выше (и рассчитаны они на применение в доме или здании). Это в среднем. Но бывают и исключения, когда например, высокочастотные инверторы, прежде всего за счёт своей низкой цены, пытаются занять свою нишу в домашнем сегменте. Идеология сетевого инвертора – энергию, полученную от солнечных панелей (соединённых на ВЫСОКОЕ напряжение, обычно в диапазоне 200 – 600 В), преобразовать сразу в переменное ВЫСОКОЕ напряжение 220 В и сразу подавать её в промышленную сеть, синхронизируясь с ней. Кроме того, сетевой инвертор обходится и без аккумуляторных батарей! Иначе пришлось бы их, подсоединять к очень высокому напряжению (на линию между узлом солнечного контроллера и узлом инвертора), что весьма опасно. Так как, напряжение на входе и на выходе высокое, можно обойтись без трансформаторов, что должно удешевлять сетевые инвертора (хотя они почему-то стоят раза в 2 дороже обычных батарейных инверторов). Как используют сетевые инверторы за рубежом? Если нагрузка в доме большая, а солнечной энергии поступает немного, то она вся уходит на домашнее потребление. Если же нагрузки почти нет, и солнце в зените – тогда эта не используемая владельцем энергия закачивается в промышленную энергосеть. Т.е. его счётчик крутится в обратную сторону, сматывая показания. Получается, что вместо аккумуляторов задействуется огромная электросеть. В неё можно качать солнечную электроэнергию, выкручивая счётчик в большой минус, а потом, вечером, или гораздо позже, в зимний период, возвращать себе обратно то, что отдавали летом! Промышленная электросеть это гигантский неисчерпаемый аккумулятор, вечный и не имеющий потерь. Но, к сожалению, пока в России есть два фактора, которые сводят на нет все преимущества сетевых инверторов:
1. У нас не разрешено частным лицам что-либо закачивать в сеть. И таких счётчиков (которые позволяют вычитать обратную энергию) больше нет. Причём многие современные счётчики эту энергию (которая подаётся обратно в сеть) приплюсуют к потреблённой, и счета за электричества увеличатся!
2. Если в Европе электричество практически не отключают, и там зачастую можно не иметь резервную систему на аккумуляторах, то в России такие отключения и аварии не редкость. Поэтому аккумуляторные батареи жизненно необходимы не только в случае полной автономии, но и для резерва, даже если сеть 220 В имеется. Хотим обратить Ваше внимание, что в случае отключения промышленного 220 В, сетевой инвертор не будет выдавать свои 220 В даже если светит солнце и энергии как бы в избытке.
Его конструкция сделана так, что промышленное 220 В для него является опорным и ведущим. И, кроме того, по требованиям безопасности – чтобы когда ничего не подозревающий электрик отключит подачу сетевого 220 В и, допустим, приступит к ремонту сети голыми руками, — чтобы его не убило, сетевой инвертор не должен при этом продолжать генерировать 220 В.
Поэтому, если электричество в сети исчезнет, а будет установлен только сетевой инвертор с солнечными панелями, то вы останетесь без электричества. Большие деньги затрачены, а резервного электроснабжения не будет.
Расскажем о плюсах и минусах низкочастотных инверторов. Забегая вперёд, сразу отметим, что они во многом противоположны высокочастотным инверторам. В низкочастотных инверторах используется, разумеется, низкая частота преобразования энергии от аккумуляторов, а именно частота 50 Гц. Эта частота соответствует частоте промышленной сети, в которой тоже 50 Гц. На такой частоте работают относительно большие и тяжёлые трансформаторы. Подобный трансформатор как бы является промежуточным буфером между электроникой инвертора и нагрузкой, что увеличивает надёжность устройства. Легко заметить огромные трансформаторы, занимающие почти половину корпуса приборов. Плюсы данного решения очевидны – возможность построения надёжных мощных систем (даже на десятки тысяч ватт) и наличие по умолчанию мощного быстрого заряда аккумуляторов от сети. Ведь в сети 50 Гц, а значит, энергию от сети можно напрямую подать на тот же самый мощный трансформатор, который электроника заставит работать в обратную сторону. У низкочастотных инверторов есть недостатки. Это размер, вес и, как следствие, цена.
Источник