Фотоэлементы для солнечных батарей кпд

Солнечные батареи с рекордным КПД

Рекордсменом по КПД среди солнечных батарей, из числа так или иначе доступных на рынке сегодня, являются, разработанные Институтом гелиоэнергетических систем Общества имени Фраунгофера в Германии, солнечные батареи на базе многослойных фотоэлементов. Начиная с 2005 года, их коммерческим внедрением занимается компания Soitec.

Размер самих фотоэлементов не превышает 4 миллиметра, а фокусировка солнечного света на них достигается путем применения вспомогательных концентрирующих линз, благодаря которым насыщенный солнечный свет преобразуется в электричество с КПД достигающим 47%.

Батарея содержит четыре p-n перехода, чтобы четыре различные звена фотоэлемента могли эффективно принимать и преобразовывать излучение с конкретной длиной волны, из солнечного света, сконцентрированного в 297,3 раза, в диапазоне длин волн от инфракрасного до ультрафиолетового.

Исследователи под руководством Франка Димирота изначально поставили перед собой задачу вырастить многослойный кристалл, и решение было найдено, — они срастили подложки для выращивания, и в результате был получен кристалл с различными полупроводниковыми слоями, с четырьмя фотоэлектрическими подъячейками.

Процесс выращивания получился сложнее, чем это имеет место в традиционном производстве кремниевых батарей, однако производительность новых батарей удвоилась. К тому же расходы на создание системы с концентратором здесь ниже, чем при создании обычных солнечных батарей.

Многослойные фотоэлементы давно используются на космических аппаратах, но теперь на их основе запущены и солнечные станции уже в 18 странах. Это становится возможным благодаря совершенствованию и удешевлению технологии. В итоге, количество стран, снабженных новыми солнечными станциями, будет расти, и налицо тенденция к конкуренции на рынке промышленных солнечных батарей.

На втором месте – солнечные батареи на базе трехслойных фотоэлементов Sharp, КПД которых достиг 44,4%. Фосфид индия-галлия – первый слой фотоэлемента, арсенид галлия – второй, арсенид индия-галлия – третий слой. Три слоя разделены диэлектриком, который служит для достижения туннельного эффекта.

Концентрация света на фотоэлемент достигается благодаря линзе Френеля, как и у немецких разработчиков, — свет солнца концентрируется в 302 раза, и преобразуется трехслойным полупроводниковым фотоэлементом.

Научные исследования по развитию этой технологии непрерывно велись Sharp, начиная с 2003 года при поддержке NEDO – японской организации общественного управления, содействующей научным исследованиям и развитию, а также распространению промышленных, энергетических и экологических технологий. К 2013 году Sharp был достигнут рекорд в 44,4%.

За два года до Sharp, в 2011 году, американская компания Solar Junction уже выпустила аналогичные батареи, но с КПД 43,5%, элементы которых обладали размером 5 на 5 мм, и фокусировка также производилась линзами, концентрируя свет солнца в 400 раз. Фотоэлементы были трехпереходными на основе германия, и группа планировала даже создать пяти и шестипереходные фотоэлементы, чтобы лучше захватить спектр. Исследования ведутся компанией и по сей день.

Таким образом, максимально рекордным КПД обладают солнечные батареи, выполненные в сочетании с концентраторами, которые, как мы видим, производят и в Европе, и в Азии, и в Америке. Но эти батареи в основном изготавливаются для постройки наземных солнечных электростанций крупных масштабов и для эффективного электроснабжения космических аппаратов.

Недавно был поставлен рекорд в сфере обычных потребительских солнечных панелей, которые доступны большинству желающих снабдить ими, например, крышу дома.

В середине осени 2015 года компания Илона Маска «SolarCity» представила наиболее эффективные потребительские солнечные панели, КПД которых превышает 22%.

Этот показатель подтвердили замеры, проведенные лабораторией Renewable Energy Test Center. Завод в Баффало уже ставит план производства на каждый день – от 9 до 10 тысяч солнечных панелей, точные характеристики которых пока не сообщаются. Компания уже планирует снабжать своими батареями не менее 200000 домов ежегодно.

Дело в том, что оптимизированный технологический процесс позволил предприятию значительно снизить стоимость производства, при этом повысив КПД в 2 раза по сравнению с широко распространенными потребительскими кремниевыми солнечными панелями. Маск уверен, что именно его солнечные панели будут пользоваться наибольшей популярностью у домовладельцев в ближайшем будущем.

Источник

КПД солнечных батарей — обзор самых эффективных модулей

Обновлено: 7 января 2021

КПД у разных типов солнечных панелей

Существует несколько разновидностей солнечных модулей, которые изготавливаются по собственным технологиям и обладают определенными параметрами. КПД солнечных панелей определяет их способность преобразовать солнечную энергию в электрический ток. Расчет производится путем деления мощности энергии, вырабатываемой панелью, на мощность потока света, падающего на рабочую поверхность.

Показатели панелей изначально определялись при стандартных лабораторных условиях (STS):

  • уровень инсоляции — 1000 вт/ м2
  • температура — 25°

Большинство современных производителей производят тестирование каждой собранной батареи и прилагают результаты к документации при продаже. Это дает более полную и корректную информацию о каждой панели, поскольку в процессе изготовления возможны некоторые отклонения от технологических нормативов. Поэтому сравнение любых двух (или более) панелей всегда выявляет небольшое расхождение демонстрируемых параметров.

Практически любые отклонения в первую очередь отражаются на эффективности, т. е. на КПД солнечной батареи. Из-за этого все разновидности не имеют четко определенного значения. Обычно указывают довольно широкий диапазон, который может давать заметную разницу параметров солнечных модулей, изготовленных по одинаковой технологии.

Все виды фотоэлементов обладают определенными свойствами, определяющими эффективность солнечных батарей. Каждая разновидность имеет свои пределы возможностей, обусловленные строением и составом полупроводников.

Новый мировой рекорд: эффективность солнечных батарей повысили до 29,15%

Научно-исследовательская группа Helmholtz-Zentrum Berlin (HZB) описала в журнале Science разработку тандемного солнечного элемента из перовскита и кремния. Его КПД составил 29,15%. На текущий момент — это новый мировой рекорд. Предыдущие показатели КПД были в районе 28%. Исследователи планируют довести эффективность тандемного солнечного элемента до 30% и даже превысить этот показатель.

Для солнечных элементов базовым материалом является кремний, а разработки с использованием перовскита (титаната кальция) ведутся параллельно. Ученые думают, что возможности перовскита еще не раскрыты и используя оба материала, они получают прирост эффективности.

Солнечные элементы, состоящие из двух полупроводников с различной шириной запрещенной зоны, способны демонстрировать высокую эффективность по сравнению с отдельными элементами, так как тандемные элементы полнее используют солнечный спектр. В частности, обычные кремниевые солнечные элементы главным образом эффективно преобразуют в электрическую энергию инфракрасную часть солнечного спектра, в то время как соединения перовскита могут эффективно преобразовывать видимую часть спектра, повышая КРД тандема.
Использование перовскита и кремния не увеличивает стоимость солнечных панелей.

Виды солнечных фотоэлементов и их КПД

Существуют разные виды солнечных батарей:

  • кремниевые
  • теллур-кадмиевые
  • из арсенида галлия
  • из селенида индия
  • полимерные
  • органические
  • комбинированные, многослойные

Самые эффективные солнечные панели из тех, что находятся в серийном производстве — кремниевые.

Их выпускают в двух видах:

  • монокристаллические. Изготавливаются из тонких пластинок, срезанных с цельного (монолитного) кристалла кремния. Считается, что это — лучшие солнечные панели, демонстрирующие КПД от 17 до 22 %
  • поликристаллические. Заготовкой для этих элементов является брикет кремния, который был расплавлен и разлит по формам. Такие панели обладают немного сниженными показателями по всем позициям, чем монокристаллические. Их КПД находится в диапазоне 12-17 %

Есть еще одни современные солнечные батареи с высоким КПД — это панели на основе селенид-индия. Они способны выдать КПД 15-20 %. Несколько меньшими качествами обладают элементы из теллурида кадмия — не более 10-12 %.

Остальные виды значительно уступают лидерам — аморфные и полимерные элементы демонстрируют КПД не более 5-6 %. Необходимо учитывать, что приведенные показатели — усредненные. У разных производителей есть образцы, превышающие обычные нормы эффективности. Это не меняет общей картины, но демонстрирует необходимость совершенствования технологий, разработки новых методов производства фотоэлементов.

От чего зависит эффективность?

КПД солнечных фотоэлектрических установок составляет лишь малую часть от теоретически возможных показателей. Расчетный КПД доходит до 80-87 %, но изъяны технологии, недостаточная чистота материалов и неточность сборки элементов существенно снижают эти значения. Основная проблема кремниевых элементов заключается в способности поглощать лучи только инфракрасного спектра, а энергия ультрафиолетовых участков остается неиспользованной.

Проблема состоит в дороговизне процессов очистки, выращивания кристаллов и прочих тонких процедур, без которых ожидаемого эффекта не удастся добиться. Все солнечные панели с высоким КПД отличаются высокой стоимостью, что делает их недоступными для массового пользователя.

Необходимо учитывать также погодные и климатические условия. Самая производительная система не сможет демонстрировать высокие результаты, если источник энергии скрыт за тучами, или находится низко над горизонтом. Этот фактор не подлежит регулированию, единственным способом борьбы с ним может стать повышенная эффективность солнечных панелей.

Некоторые разновидности фотоэлементов способны вполне стабильно вырабатывать энергию в пасмурную погоду, например, тонкопленочные виды. Однако, их производительность невысока и не дает нужного количества энергии. Чем выше КПД батарей, тем сильнее падает количество вырабатываемой энергии при появлении облачности.

Ежегодно появляются заявления от различных компаний или групп ученых о разработке высокоэффективных образцов солнечных панелей, стабильно работающих в сложных условиях. Однако, в продаже до сих пор есть только привычные кремниевые или пленочные разновидности, а новинок не видно. Причиной этого является слишком высокая себестоимость производства и нестабильность результатов технологий, вынуждающие изготовителей пока отказываться от недоработанных новшеств.

Срок службы и окупаемость

Большинство солнечных панелей способны работать по 25 лет и более. Однако, первоначальные характеристики со временем ухудшаются, происходит падение производительности и, как следствие, уменьшение КПД. Факторы, влияющие не длительность эксплуатации фотоэлементов:

  • тип конструкции. Чем выше изначальная производительность, тем более высокие результаты панель будет показывать после многолетней службы
  • условия эксплуатации. В регионах с сильными среднесуточными и среднегодовыми перепадами температур ресурс панелей быстро уменьшается. Происходит физический износ полупроводников, нарушается прочность соединения слоев, образующих p-n переход. Все эти факторы отрицательно влияют на КПД солнечных модулей

Окупаемость панелей в первую очередь зависит от инсоляции — количества солнечной энергии, доступной фотоэлементам. Здесь необходимо учитывать следующие факторы:

  • продолжительность светового дня
  • положение солнца над горизонтом
  • погодные условия в регионе

Практика показывает, что средний процент деградации солнечных батарей составляет 0,6 % в год. Однако, к естественным процессам прибавляются внешние воздействия — температурные, механические и т.п. Поэтому производители обычно гарантируют, что в течение 10 лет эксплуатации производительность не упадет больше, чем на 10 %.

Вопрос окупаемости солнечных панелей всерьез никем не рассматривается. Существуют приблизительные расчеты, показывающие количество выработанной энергии и ее среднюю стоимость в течение 10, 25 лет. Эти данные не способны показать реальной картины, поскольку все комплексы работают в собственных условиях, подвергаются тем или иным воздействиям и не могут гарантировать заданной производительности.

Специалисты утверждают, что для некоторых регионов окупаемость солнечных батарей никогда не наступает, в других местностях она составляет около 10 или 15 лет.

Подробные исследования не производятся, или ведутся только для данного района. Если необходимо узнать технико-экономические показатели СЭС, приходится каждый раз производить индивидуальный расчет для данных условий, моделей солнечных модулей и прочих факторов воздействия.

Самые эффективные солнечные батареи

Обычный пользователь не старается глубоко вникнуть в теорию, поэтому он чаще всего задает вопрос — хочу купить солнечные панели, какие лучше? Вопрос простой, но ответить на него однозначно крайне сложно. Все зависит от возможностей и потребностей покупателя.

Споры о том, какие солнечные батареи самые эффективные ведутся с самого начала их использования. Несмотря на приоритет кристаллических кремниевых конструкций, нередко впереди оказываются другие виды панелей. Есть рекордсмены в этой области, например, фирма Sharp объявила о создании панелей с КПД 44 %. Эта же фирма создала модули с эффективностью 37,9 %. Есть образцы от других разработчиков с КПД около 32 %. Все эти модели весьма дороги и в массовое производство пока не поступают. Нерентабельность — основная проблема развития солнечных модулей.

Исследования и разработки для повышения КПД

Наиболее перспективным направлением исследований считается создание многослойных панелей. Основной упор делается на возможность получения энергии от инфракрасных и ультрафиолетовых лучей, которые во многом более активны, чем видимые части спектра. Работы ведутся и в области очистки кремниевых структур, создания наиболее однородных и чистых кристаллов.

Еще одним направлением является создание максимально плотных и ровных соединений полупроводников. Электрический ток возникает на границе двух материалов, и, если поверхность обоих изобилует впадинами и прочими изъянами, эти участки исключаются из общей рабочей зоны. Проблема технически сложная, поскольку речь идет о микронной точности шлифовки. Для промышленного производства эти методики пока слишком сложны, а цены на панели будут недоступны рядовым покупателям. Процесс исследований происходит непрерывно, поэтому ожидать положительных сдвигов можно в любой момент.

Видео-инструкция по сборке своими руками

Источник

Читайте также:  Солнечные панели чистая энергия
Оцените статью