- Солнечные элементы и их виды
- Элементы солнечных батарей
- Принцип работы солнечных батарей
- Виды солнечных батарей
- Монокристаллические
- Поликристаллические (multi-Si)
- Аморфные (полимерные солнечные батареи)
- Органические
- Безкремниевые
- Сравнение КПД батарей разного типа
- Как подобрать солнечную панель?
- Виды подключения
- Исчерпывающая информация о фотодиодах
- Принцип работы фотодиодов
- Схема фотодиода
- Режимы работы
- Режим фотогенератора
- Режим фотопреобразования
- Основные параметры
- Из чего состоит фотодиод?
- Разновидности фотодиодов
- Лавинные
- С барьером Шоттки
- С гетероструктурой
- Области применения фотодиодов
Солнечные элементы и их виды
Солнечные элементы – это части батарей, которые генерируют электрический ток. Появились они сравнительно недавно, в XIX веке, и только сейчас их начали использовать в качестве недорогого, но эффективного способа добычи энергоресурсов. Принцип работы солнечных батарей довольно прост. Ими можно оснастить жилое или нежилое помещения. Существуют различные виды данных элементов питания. Разберем их более подробно.
Элементы солнечных батарей
Зачастую энергия солнечной панели используется для дома и его нужд. Вырабатываемого электрического тока достаточно для двухэлементной бойлерной системы, холодильника, телевизора и прочих бытовых приборов.
Солнечные лучи – это экологически чистое «топливо». Ведь в процессе работы модуль солнечной батареи не выделяет обилие вредных выхлопов, углекислый газ и не расходует невосполнимые природные ископаемые.
Стоит понимать, что солнечные батареи складываются из множества модулей. И то, что мы видим на крыше зданий или на стенах, является только частью системы.
Из чего состоит солнечная система электроснабжения:
- Солнечные ячейки, складывающиеся в панели. Это те видимые нам батареи, которые крепятся на крышу или стены.
- Аккумулятор. Данный элемент в системе необходим для накапливания лишней энергии, например, в ясный день. В пасмурную погоду, когда батареи работают не на полную мощность, ток на бытовые нужды берется из АКБ.
- Контроллеррегулирует заряд аккумулятора, подсказывает владельцу системы, что заряда недостаточно или слишком много. Излишнее напряжение губительно для аккумулятора.
- Преобразователь постоянного тока в переменный (инвертор) необходим для работоспособности бытовых приборов. Ведь не все из них способны работать на постоянном потоке заряженных частиц.
Подключая солнечные модули, необходимо уже изначально определиться с местом их расположения, видом, количеством бытовой техники, необходимостью контролера АБК.
Стоит понимать, что такая системы является наборной, и вы с легкостью можете установить еще не один солнечный модуль.
Принцип работы солнечных батарей
Человечество научилось получать энергию из ископаемых, потоков воды и порывов ветра, дошли и до применения световых лучей. Существуют даже солнечные модули, которые поглощают невидимый инфракрасный спектр и работают ночью. Всепогодные батареи эффективны в пасмурную погоду, туман, дождь.
Принцип работы любой батареи – преобразование лучей солнца в электрический импульс.
Зачастую солнечные модули работают на кристаллах кремния, и этому есть объяснение. Данный металл чувствителен к воздействию лучей, он недорог в добыче, а КПД батарей составляет 17-25%. Кристалл кремния при попадании на него солнечных лучей образует направленное движение электронов. При средней площади батареи 1-1,5 м² можно достичь на выходе напряжение в 250 Вт.
В настоящее время применяется не только кремний, но и соединения селена, меди, иридия и полимеров. Но широкого распространения они не получили, даже несмотря на КПД в 30-50%. Все потому, что они очень дороги. Для электрификации обычного дачного или загородного дома отлично подойдет кремниевая фотоэлектрическая панель.
Виды солнечных батарей
Такие аккумуляторы постоянно видоизменяются. Эта область модифицируется и подвергается инновационным решениям.
Именно поэтому существует много видов солнечных панелей.
Монокристаллические
Данные батареи обладают хорошим КПД. Каждая ячейка являет собой отдельный кристалл кремния. Поверхность батареи слегка выпуклая, насыщенного синего цвета. Фотоэлектрические панели этого типа имеют самую высокую цену, которая обуславливается сложностью технологии. Ведь все кристаллы развернуты в одном направлении.
Необходимо будет дополнительное оборудование, которое будет разворачивать комплекс панелей в зависимости от положения Солнца на горизонте. Из-за необходимости прямых лучей такие элементы устанавливают на хорошо освещенных участках или возвышенностях.
Средний срок эксплуатации – 25 лет.
Поликристаллические (multi-Si)
Солнечные модули данного вида обладают неравномерно насыщенным синим цветом из-за разной направленности кристаллов кремния. Они дешевле монокристаллических аналогов, обладают хорошим КПД, их не нужно разворачивать к солнцу. В пасмурную погоду или облачность они показывают лучшие результаты, нежели вышеописанный вид.
Средний срок эксплуатации без потери качеств – 15-20 лет.
Аморфные (полимерные солнечные батареи)
В данном случае используются не цельные кристаллы, а гидрид кремния. Его наносят на твердую или гибкую подложку. Преимуществами является низкая стоимость. К тому же, полимерный солнечный элемент можно нанести на любую гибкую подложку. Значит, вы можете по максимуму использовать скат крыши, неровные поверхности.
Фотоэлектрическая структура полимерного кремния позволяет поглощать свет даже рассеянный. Аморфные солнечные батареи выгодно ставить в условиях севера, короткого светового дня, в областях с агрессивными атмосферными условиями.
Существуют и другие, более редкие разновидности.
Органические
Эти солнечные батареи только изучаются. Активные разработки появились в последнем десятилетии, поэтому достоверных данных насчет гарантированного срока эксплуатации у производителей нет. Солнечный элемент использует органическую основу – соединения углерода.
Некоторые виды солнечных панелей данного строения обладают хорошим КПД, они пластичны, экологичны, просты в утилизации и значительно дешевле кремниевых аналогов.
Безкремниевые
Изготовлены на основе редких металлов. Вместо кремния применяются соединения теллура, селена, меди, индия. Данные металлы редкие и дорогие, поэтому стоимость батарей очень высокая. Однако панели этого типа могут работать в широком температурном диапазоне.
Сравнение КПД батарей разного типа
Разновидность панели | Максимальное значение КПД |
Монокристаллические | 20-25% |
Поликристаллические | 15-20% |
Аморфные | 6-7% (в некоторых случаях до 15%) |
Органические | 12-15% |
На основе редких металлов | 10-20%, в зависимости от применяемого металла. Некоторые панели могут выдавать до 40% |
Как подобрать солнечную панель?
Как видите, типы солнечных батарей различны.
Подбирать устройство необходимо, исходя из многих факторов:
- степени освещенности территории;
- климата;
- площади помещения;
- количества бытовых приборов;
- финансового бюджета;
- площади крыши;
- возможности пользования стационарными электросетями;
- отдаленности от населенного пункта.
Естественно, если вы собираетесь поставить солнечные панели на дачу, где проводите время только летом, стоит побеспокоиться о безопасности вашего имущества.
Если у вас длинный световой день, хорошо освещаемая территория, то отдайте предпочтение моно- и поликристаллическим моделям. В холодных широтах приобретайте поликристаллические или полимерные фотоэлементы.
Виды подключения
Вы уже купили фотоэлементы для солнечных батарей, АКБ и все остальные составляющие. Осталось определиться с типом электроснабжения вашего жилища. Они бывают:
- Автономные. В данном случае ваш дом питается только от солнечных батарей и никак не связан с общей электрификацией.
- Смежные. Панели подключаются в общую сеть. Если бытовые приборы потребляют небольшое количество энергии, то стационарная сети не используется, ток берется из аккумулятора. В случае превышения потребностей электричество расходуется и из общей сети. Стоит учитывать, что без сети сами по себе батареи работать не будут.
- Комбинированные похожи на смежные. Но в данном случае излишек электроэнергии, получаемый панелями, идет не в аккумулятор, а в общую сеть.
Какую систему и панели выбрать, решать только вам. Перед покупкой проконсультируйтесь у нескольких специалистов, ведь такие системы приобретаются не на один год. При правильном подключении они будут радовать вас долгое время.
Источник
Исчерпывающая информация о фотодиодах
Фотодиоды – полупроводниковые элементы, обладающие светочувствительностью. Их основная функция – трансформация светового потока в электросигнал. Такие полупроводники применяются в составе различных приборов, функционирование которых базируется на использовании световых потоков.
Принцип работы фотодиодов
Основа действия фотодиодных элементов – внутренний фотоэффект. Он заключается в возникновении в полупроводнике под воздействием светового потока неравновесных электронов и дырок (т.е. атомов с пространством для электронов), которые формируют фотоэлектродвижущую силу.
- При попадании света на p-n переход происходит поглощение световых квантов с образованием фотоносителей
- Фотоносители, находящиеся в области n, подходят к границе, на которой они разделяются под влиянием электрополя
- Дырки перемещаются в зону p, а электроны собираются в зоне n или около границы
- Дырки заряжают p-область положительно, а электроны – n-зону отрицательно. Образуется разность потенциалов
- Чем выше освещенность, тем больше обратный ток
Если полупроводник находится в темноте, то его свойства аналогичны обычному диоду. При прозванивании тестером в отсутствии освещения результаты будут аналогичны тестированию обычного диода. В прямом направлении будет присутствовать маленькое сопротивление, в обратном – стрелка останется на нуле.
Схема фотодиода
Режимы работы
Фотодиоды разделяют по режиму функционирования.
Режим фотогенератора
Осуществляется без источника электропитания. Фотогенераторы, являющиеся комплектующими солнечных батарей, иначе называют «солнечными элементами». Их функция – преобразовывать солнечную энергию в электрическую. Наиболее распространены фотогенераторы, созданные на базе кремния – дешевого, распространенного, хорошо изученного. Обладают невысокой стоимостью, но их КПД достигает всего 20%. Более прогрессивными являются пленочные элементы.
Режим фотопреобразования
Источник электропитания в схему подключается с обратной полярностью, фотодиод в данном случае служит датчиком освещенности.
Основные параметры
Свойства фотодиодов определяют следующие характеристики:
- Вольтамперная. Определяет изменение величины светового тока в соответствии с меняющимся напряжением при стабильных потоке света и темновом токе
- Спектральная. Характеризует влияние длины световой волны на фототок
- Постоянная времени – это период, в ходе которого ток реагирует на увеличение затемнения или освещенности на 63% от установленного значения
- Порог чувствительности – минимальный световой поток, на который реагирует диод
- Темновое сопротивление – показатель, характерный для полупроводника при отсутствии света
- Инерционность
Из чего состоит фотодиод?
Разновидности фотодиодов
Для этих полупроводников характерно наличие в зоне p-n перехода участка, обладающего собственной проводимостью и значительной величиной сопротивления. При попадании на этот участок светового потока появляются пары дырок и электронов. Электрополе в данной области постоянно, пространственного заряда нет. Такой вспомогательный слой расширяет диапазон рабочих частот полупроводника. По функциональному назначению p-i-n-фотодиоды разделяют на детекторные, смесительные, параметрические, ограничительные, умножительные, настроечные и другие.
Лавинные
Этот вид отличается высокой чувствительностью. Его функция – преобразование светового потока в электросигнал, усиленный с помощью эффекта лавинного умножения. Может применяться в условиях незначительного светового потока. В конструкции лавинных фотодиодов используются сверхрешетки, способствующие снижению помех при передаче сигналов.
С барьером Шоттки
Состоит из металла и полупроводника, вокруг границы соединения которых создается электрическое поле. Главным отличием от обычных фотодиодов p-i-n-типа является использование основных, а не дополнительных носителей зарядов.
С гетероструктурой
Образуется из двух полупроводников, имеющих разную ширину запрещенной зоны. Гетерогенным называют слой, находящийся между ними. Путем подбора таких полупроводников можно создать устройство, работающее в полном диапазоне длин волн. Его минусом является высокая сложность изготовления.
Области применения фотодиодов
- Оптоэлектронные интегральные микросхемы. Полупроводники обеспечивают оптическую связь, что гарантирует эффективную гальваноразвязку силовых и руководящих цепей при поддержании функциональной связи.
- Многоэлементные фотоприемники – сканисторы, фоточувствительные аппараты, фотодиодные матрицы. Оптоэлектрический элемент способен воспринимать не только яркостную характеристику объекта и ее изменение во времени, но и создавать полный визуальный образ.
Другие сферы использования: оптоволоконные линии, лазерные дальномеры, установки эмиссионно-позитронной томографии.
Источник