- Литий-ионный аккумулятор — типы и характеристики, принцип работы
- Литий-ионный аккумулятор – описание, история создания
- Принцип действия
- Устройство li-ion аккумулятора
- Характеристики литиевых аккумуляторов
- Рабочее напряжение
- Ёмкость
- Рабочая температура
- Саморазряд
- Количество циклов заряд-разряд
- Разновидности аккумуляторов
- Особенности хранения и утилизации
- Отличие аккумуляторов Li-ion от Ni-Cd аккумуляторов
- Литий-ионный аккумулятор (Li-ion)
- Принцип работы литий-ионного аккумулятора
- Строение литий-ионного аккумулятора
- Процесс заряда и разряда литий-ионного аккумулятора
- Слой разделителя в литий-ионном аккумуляторе
- Из чего делают литий-ионный аккумулятор
- Литий-ионные аккумуляторы в автомобиле Tesla
- Защитный SEI-слой
- Заключение
Литий-ионный аккумулятор — типы и характеристики, принцип работы
Литий-ионный аккумулятор – описание, история создания
Литий-ионный аккумулятор – источник тока, основанный на преобразовании химических реакций, происходящих внутри источника, в электрическую энергию. Данный тип батареи наиболее распространён в современной жизни, в большинстве своём из-за повсеместного использования в электронике: сотовых телефонах, цифровых фотоаппаратах, ноутбуках и так далее. Кроме этого, литиевые аккумуляторы ставят в электромобили.
Первое упоминание современных литиевых аккумуляторных батарей относится к 70-м годам XX века и связано с именем Майкла Стэнли Уиттингема. Будучи химиком в нефтяной компании «Exon», он создал источник тока, в котором в качестве анода использовался сульфид титана, а катод был литиевым. Первая батарея обладала напряжением 2,3 Вольт и способностью перезаряжаться, однако была пожароопасной и ядовитой. При взрыве, который мог случиться внезапно, литий вступал в контакт с воздухом и горел, а дисфульд титана выделял сероводород, вдыхание которого как минимум неприятно. Помимо этого, титан обладает и всегда обладал высокой стоимостью, и из-за всех этих факторов проект Уиттенгема был закрыт.
Литий-ионная батарея, несмотря на свои недостатки, казалась достаточно привлекательной для продолжения развития, однако требовалась замена анодного материала, чем в 1978 году занялся Джон Гуденаф. Спустя некоторое время он обнаружил, что кобальтит лития (оксид лития-кобальта) обладает лучшими характеристиками, касающимися безопасности использования, а также напряжением, достигающим 4 Вольта. Однако использование лития в качестве катодного материала становилось причиной короткого замыкания аккумулятора. В 1980 году Рашид Язами указал на графит и назвал его наиболее подходящим в качестве анода материалом.
Однако потребовалось ещё одиннадцать лет, чтобы созданная и усовершенствованная батарея появилась в продаже под брендом компании «Sony».
СПРАВКА: Разработчик коммерческой версии аккумулятора Акиро Ёсино, а также Уиттенгем и Гуденаф в 2019 году получили Нобелевскую премию в области химии за равноценный вклад в создание литиево ионных аккумуляторов.
Принцип действия
Работа литионных аккумуляторов основана на электрохимическом потенциале, суть которого заключается в способности металлов отдавать отрицательные заряды. При подключении электрической цепи на аноде источника тока происходит химическая реакция, сопровождаемая образованием на его поверхности свободных электронов. По законам физики освобождённые электроны стремятся к положительной стороне – катоду, чтобы восстановить баланс, однако от движения их удерживает электролит, находящийся между анодом и катодом. Тем самым отрицательные заряды вынуждены двигаться к положительным «в обход» – через всю электрическую цепь, создавая ток.
Положительные ионы, образовавшиеся на стороне анода после «побега» электронов, проходят через электролит к катоду, чтобы удовлетворить потребность в отрицательных зарядах. В момент, когда все электроны переместятся на отрицательный электрод, аккумулятор будет разряжен.
Процесс зарядки запускает электрическую энергию в цепь, тем самым запуская в батарее обратную реакцию – скопление электронов на аноде. После полного перезаряда батарейки её можно заново подключать к цепи.
ВНИМАНИЕ: даже находясь в режиме ожидания, аккумуляторы теряют часть заряда. При этом они обладают такой характеристикой как старение – постепенно приходящая неспособность удерживать первоначальное количество заряда.
Устройство li-ion аккумулятора
В li-ion аккумуляторах в качестве отрицательного электрода служит алюминиевая фольга с нанесённым поверх слоем оксида лития. Анодом выступает медная фольга, и на её поверхность наносится графит. Между электродами располагается пористый разделитель, пропитанный электролитом. Все компоненты ради уменьшения занимаемого ими объёма сворачиваются в цилиндр или в пакет и помещаются в полностью герметичный корпус. При этом анод и катод присоединяются к токоснимающим клеммам. Герметичность конструкции обуславливается недопустимостью вытекания электролита. Кроме этого нельзя, чтобы внутрь батареи попали пары воды или кислорода, иначе произойдёт реакция между попавшим веществом и электролитом или электродами, и аккумулятор выйдет из строя.
В батарейку в соображениях безопасности могут быть включены специальные элементы. Например, устройство, которое увеличит сопротивление аккумулятора при положительном температурном коэффициенте. А также устройство, которое в случае превышения давления газа допустимых значений разорвёт связь между катодом и положительной клеммой. Иногда корпус батареи может быть оснащён клапаном предохранения, основной задачей которого является сброс внутреннего давления в случае аварийной ситуации или нарушения эксплуатационных условий.
Некоторые особо важные источники таки могут обладать внешней электронной защитой, которая не позволяет перегреть или перезарядить батарейку, а также исключает возможность короткого замыкания.
По форме корпуса li-ion аккумуляторы делятся на цилиндрические и призматические, первые из которых изготавливаются путём сворачивания слоёв, из которых состоит батарея. Призматический тип аккумулятора li-ion, численно превосходящий из-за применения в ноутбуках и мобильных телефонах, создаётся путём плотного складывания пластин друг на друга.
Характеристики литиевых аккумуляторов
ИНТЕРЕСНО: собственные удельные характеристики обеспечили описываемым батареям лидирующие позиции среди всех выпускаемых химических источников тока.
Рабочее напряжение
Минимальное значение напряжения составляет 2,2-2,5 Вольт, а максимальное не превышает 4,25-4,35 Вольт. На данную характеристику в значительной степени влияет материал, используемый для электродов.
Ёмкость
На свойство батареи хранить заряд непосредственно влияет ток и температура, которая возникает при разряде. Вообще максимальная ёмкость аккумуляторов варьируется в широком диапазоне и зависит от типоразмера. Например, в наиболее распространённой батарее 18650 ёмкость обычно находится в пределах от 1000 до 3600 миллиампер-час.
СПРАВКА: 14500 аккумулятор, размеры которого сопоставимы с пальчиковой батарейкой (АА), также популярен среди пользователей и обладает номинальной ёмкостью 900 микроампер-час.
В общем, под ёмкостью подразумевается количество ионов лития, способных достигнуть анода или катода. Со временем после многочисленных зарядок электроды теряют свои свойства и могут вместить всё меньшее число зарядов, а аккумулятор тем временем не способен удерживать прежнее их количество. В результате батарея устаревает и постепенно утрачивает основополагающую функцию.
Рабочая температура
Предельные значения температуры находятся в диапазоне от -20°С до +50°С, однако работать в пограничных режимах аккумулятор долго не сможет, это скажется на его способности запасать энергию. Оптимальная температура для функционирования составляет примерно 20°С, а лучшие значения для хранения – от 0 до 10°С. При этом уровень заряда 30-50% считается наиболее щадящим для ёмкости при длительном хранении.
ВНИМАНИЕ: если температура упадёт до +4°С объём вырабатываемой батареей энергии уменьшится на 5-7% в соответствии с максимальным значением. Более низкие значения приведут к потери 40-50% ёмкости и преждевременному исчерпанию ресурса.
Саморазряд
Данная характеристика варьируется от 6% до 10% в год.
Количество циклов заряд-разряд
Батарея литиевая не имеет эффекта памяти, а срок её годности рассчитан в зависимости от количества циклов полной разрядки.
Процент оставшегося заряда, % | Количество циклов зарядки |
500 | |
50 | 1500 |
75 | 2500 |
90 | 4700 |
Так, для увеличения срока службы аккумулятора стоит чаще его заряжать.
Разновидности аккумуляторов
Наиболее распространены следующие виды литий-ионных батарей:
- Литий-кобальтовая. Популярный тип в ноутбуках, смартфонах и цифровых камерах. В состав входит катод из кобальтового оксида и графитовый анод. К преимуществам относят высокий показатель удельной энергоёмкости, а к недостаткам: низкий срок годности, ограниченную нагрузку и невысокую термическую стабильность.
- Литий-маргенцевая. Основная область применения – электроинструменты, медицинское оборудование и электрические силовые устройства. Катод представляет собой литий-марганцевую шпинель, обеспечивающей низкое сопротивление.
- Литий-никель-марганец-кобальт-оксидная. Сочетание металлов, входящих в состав, позволяет использовать сильные стороны каждого элемента. Применяется как в частных областях, так и в более крупных – промышленных, например, в системах безопасности и аварийного освещения.
- Литий-железно-фосфатная. Популярный вариант для стационарных специализированных устройств. К преимуществам относят стойкость к неправильным условиям эксплуатации, высокую безопасность и термическую стабильность, а к минусам причисляют малое значение ёмкости.
- Литий-никель-кобальт-алюминий-оксидная. Дороговизна оправдывается долговечностью и хорошими показателями энергоёмкости. Используют в промышленных целях и медицинском оборудовании.
- Литий-титановая. Можно встретить в сфере уличного освещения и автомобильных агрегатах. Дорогие и обладают низкой удельной энергоёмкостью, однако имеют долгий срок годности, работают в широком температурном диапазоне, производительны и безопасны.
Особенности хранения и утилизации
Хранить li-ion аккумуляторы необходимо в следующих условиях:
- Место хранения должно быть сухим и прохладным, причём батарейку следует предварительно извлечь из оборудования.
- Оптимальная температура должна находиться в диапазоне от +1°С до +25°С. При этом допускается хранение в холодильнике, но сначала аккумулятор нужно обернуть непромокаемым и не пропускающим влагу материалом.
- Заряд батарейки следует сохранить в районе 40%, это позволит избежать падения напряжения при саморазряде ниже допустимого.
После окончания срока годности использованный аккумулятор нужно сдать на переработку или утилизацию, причём этими вопросами занимаются специализированные службы, занимающиеся приёмом батарей.
Обычно процедура переработки включает в себя несколько этапов:
- Разбор корпуса.
- Избавление от электролита путём слива.
- Очищение электродов.
- Переработка корпуса и переплавление металлов.
ВАЖНО: литиевые батареи нельзя выбрасывать, как обычный мусор! Для их утилизации необходимо обращаться в специальные пункты сдачи.
Существует несколько способов для определения мест сбора использованных источников тока:
- Проект RecycleMap от «Гринпис», позволяющий после выбора и объекта утилизации города найти пункты приёма.
- Городской сайт администрации. На случай, если регион тщательно следит за подобным процессом.
- Сайты с объявлениями. Частные организации и подрядчики выкладывают в интернет информацию о сборе батарей.
- Магазины бытовой техники или крупные гипермаркеты. В последнее время в подобных местах стали появляться специальные контейнеры, куда можно выбросить неработающие батарейки.
Отличие аккумуляторов Li-ion от Ni-Cd аккумуляторов
Ёмкость литий-ионных источников тока значительно выше, чем тот же показатель у никель-кадмиевых аккумуляторов, вследствие чего требуется много меньшая по весу и габаритам батарея, чтобы обеспечить одно и то же время работы.
Также в процессе хранения ввиду низкой скорости саморазряда li-ion аккумуляторы разряжаются меньше, чем другие типы, и они более терпимы к постоянной зарядке, даже если заряд батареи не обнулён.
В плане экологичности рассматриваемые батарейки меньше вредят окружающей среде, чем никель-кадмиевые, как при изготовлении, так и в использовании материалов.
Однако по отношению к Ni-Cd аккумуляторами в литий-ионных используют более дорогостоящие технологии.
Источник
Литий-ионный аккумулятор (Li-ion)
В настоящее время литий-ионный аккумулятор используется абсолютно во всей домашней и портативной электронике.
li-on аккумуляторы в гаджетах и устройствах
Можно без преувеличения сказать: без портативных источников питания, мир современной техники был бы намного беднее. Все разнообразие карманных электронных гаджетов, приборов, смартфонов, гироскутеров, электромобилей наконец, стало возможным благодаря литий-ионным аккумуляторам.
Принцип работы литий-ионного аккумулятора
Давайте рассмотрим литий-ионный аккумулятор. Как видите, он состоит из нескольких слоев с различным химическим составом.
состав литий-ионного аккумулятора
В основе работы литий-ионного аккумулятора лежит, так называемый, электрохимический потенциал. Суть его в том, что металлы стремятся «отдавать» свои электроны. Как видно на рисунке ниже, наибольшая способность к отдаче электронов – у лития, а наименьшая – у фтора. Если такой атом отдает свой электрон, то он становится положительным ионом.
Первая в истории электрическая батарейка, созданная более 200 лет назад Алессандро Вольтой, работала как раз на принципе электрохимического потенциала. Вольта взял два металла с разными электрохимическими потенциалами (цинк и серебро) и получил электрический ток. В честь его открытия такую “батарейку” назвали Вольтовым столбом.
Вольтов столб
В 1991 г. Sony выпустила первый коммерчески успешный литий-ионный аккумулятор.
В литий-ионных элементах используется металл с наибольшей способностью отдавать электроны – литий. У лития всего один электрон на внешней орбите, и он постоянно стремится его «потерять».
атом лития
Из-за этого литий считается чрезвычайно химически активным металлом. Он реагирует даже с водой и воздухом. Но активен только чистый литий, а вот его оксид, напротив, очень стабилен.
оксид лития
Это свойство лития как раз используется при создании литий-ионных аккумуляторов.
Допустим, мы каким-то образом отделили атом лития от оксида. Этот атом будет крайне нестабилен и сразу превратится в положительный ион, потеряв электрон.
положительный ион
Однако в составе оксида литий гораздо более стабилен, чем одинокий атом лития. Если мы сможем каким-то образом обеспечить движение по двум отдельным путям для электрона и для положительного иона лития, то ион самостоятельно достигнет оксида и встанет там на свое место. При этом мы получим электрический ток благодаря движению электрона.
Итак, можно получить электрический ток из оксида лития, если сначала отделить атомы лития от оксида и затем направить потерянные ими электроны по внешней цепи. Рассмотрим, как эти две задачи решаются в литий-ионных элементах.
Строение литий-ионного аккумулятора
Помимо оксида лития, элементы содержат также электролит и графит. В графите связь между слоями гораздо слабее, чем между атомами внутри слоев, поэтому графит имеет слоистую структуру.
строение литий-ионного аккумулятора
Электролит, помещенный между оксидом лития и графитом, служит барьером, пропускающим сквозь себя только ионы лития. Электроны же не могут проникать сквозь электролит и отскакивают от него, как теннисный мячик об стенку. В качестве электролита используется органическая соль лития, которая наносится на слой разделителя (о разделителе ниже в статье).
электролит пропускает ионы и не пропускает электроны
Процесс заряда и разряда литий-ионного аккумулятора
Итак, у нас есть разряженный аккумулятор
литий-ионный аккумулятор разряженный
Давайте же его зарядим. Для этого нам нужен какой-либо источник питания. Что произойдет в этот момент на самом литий-ионном аккумуляторе? Положительный полюс начнет притягивать электроны, «вытаскивая» их из оксида лития.
процесс зарядки литий-ионного аккумулятора
Поскольку электроны не могут проникать через электролит, то они движутся по внешней цепи через источник питания.
и в конце концов достигают графита
где очень удобно располагаются в слоях графита.
В этот же самый момент положительные ионы лития притягиваются отрицательным полюсом, проходя сквозь электролит и также попадают в графит, размещаясь между его слоями.
Когда все ионы лития достигнут графита и будут «захвачены» его слоями, батарея будет полностью заряжена.
Такое состояние батареи неустойчивое. Это можно представить как шар, который находится на самой верхушке холма и в любой момент может скатиться.
Вот мы и достигли первой цели: электроны и ионы лития отделены от оксида. Теперь надо как-то сделать так, чтобы электроны и ионы двигались разными путями. Как только мы подключим какую-либо нагрузку к нашему заряженному литий-ионному аккумулятору, то начнется обратный процесс. В этом случае ионы лития через электролит пожелают вернуться в свое изначальное состояние.
Поэтому они начнут двигаться обратно сквозь электролит, а электроны побегут через внешнюю цепь, то есть через нагрузку.
генерация электрического тока в литий-ионном аккумуляторе
Так как электрический ток – это не что иное, как упорядоченное движение заряженных частиц, то в цепи лампочки накаливания возникнет электрический ток, который заставит эту самую лампочку светиться.
Как только все электроны “убегут” из графита, то батарея полностью разрядится. Чтобы ее снова зарядить, достаточно поставить аккумулятор “на зарядку”.
разряженный литий-ионный аккумулятор
При этом графит сам по себе не участвует в химических реакциях – он лишь служит «складом» для ионов и электронов лития.
Слой разделителя в литий-ионном аккумуляторе
Если внутренняя температура элемента по какой-то причине начнет расти, жидкий электролит высохнет, и произойдет короткое замыкание между анодом и катодом. В результате элемент может загореться или даже взорваться.
Чтобы этого не произошло, между электродами помещается дополнительный изолирующий слой, называемый разделителем. Разделитель проницаем для ионов лития благодаря наличию микропор. Электроны он не пропускает.
разделитель в литий-ионном аккумуляторе
Из чего делают литий-ионный аккумулятор
В реальных литий-ионных аккумуляторах графит и оксид лития наносятся в виде покрытия на медную и алюминиевую фольгу. Ниже на рисунке мы видим, что на тонком листе меди у нас располагается графит, а на тонком листе алюминия – оксид лития.
Минус аккумулятора снимается с медной фольги, а плюс – с алюминиевой.
ну а между ними располагается еще разделитель, пропитанный электролитом
Для того, чтобы уменьшить объем, все эти три слоя сворачивают в “рулончик”.
цилиндрический аккумулятор строение
образуя при этом всем нам знакомую литий-ионную цилиндрическую батарейку
Литий-ионные аккумуляторы в автомобиле Tesla
Вообразите мир, в котором все машины оснащены электродвигателями, а не двигателями внутреннего сгорания. Электромоторы превосходят ДВС практически по всем техническим показателям, да к тому же намного дешевле и надежнее. У ДВС есть существенный недостаток: он выдает достаточный крутящий момент лишь в узком диапазоне скоростей. В общем, электродвигатель – однозначно лучший выбор для автомобиля. Об этом мы писали еще в статье про автомобиль Тесла.
Сравнение электромобилей и автомобилей с ДВС
Но есть одно «узкое место», из-за которого электрическая революция в автопроме постоянно откладывается – это источники питания. Долгое время громоздкие, тяжелые, недолговечные и ненадежные аккумуляторы электромобилей никак не могли составить конкуренцию полному баку бензина. Но все изменилось, когда на рынок вышел производитель электромобилей Тесла.
Именно литий-ионные аккумуляторы использует компания Тесла для своих электрокаров.
Стандартный элемент выдает напряжение 3,7 – 4,2 В. Множество таких элементов, соединенных последовательно и параллельно, образуют модуль.
батарейный модуль Тесла
Литий-ионные элементы при работе выделяют много тепла. При этом высокая температура снижает срок службы и эффективность самих элементов. Для контроля температуры, а также их уровня заряда, защиты от перезаряда и общего состояния элементов питания, служит специальная система управления батареями (Battery management system, сокращенно BMS). В батареях Tesla используется спиртовая система охлаждения. BMS регулирует скорость движения спирта в системе, поддерживая оптимальную температуру батарей.
радиатор для аккумуляторов Тесла
Еще одна важнейшая функция BMS – защита от перезаряда. Допустим, есть три элемента с разной емкостью. Во время зарядки элемент с большей емкостью зарядится сильнее двух остальных. Чтобы этого не допустить, BMS использует так называемое выравнивание заряда элементов (cell balancing). При этом все элементы заряжаются и разряжаются равномерно и защищены от чрезмерного или недостаточного заряда.
И в этом преимущество Tesla над технологией аккумуляторов Nissan. У Nissan Leaf серьезная проблема с охлаждением аккумулятора из-за большого размера элементов и отсутствия системы активного охлаждения.
батарея Nissan Leaf и Tesla
У конструкции с множеством маленьких цилиндрических элементов есть и еще одно преимущество: при большом расходе энергии нагрузка распределяется равномерно между всеми элементами. Если бы вместо множества маленьких элементов был один огромный элемент, из-за постоянных нагрузок он очень быстро бы пришел в негодность. Tesla сделала ставку на маленькие цилиндрические элементы, технология производства которых уже хорошо отработана. Более подробно про батарейный модуль Тесла читайте в этой статье.
Защитный SEI-слой
Во время первой зарядки внутри литий-ионного элемента происходит одно замечательное явление, спасающее элемент от скорой «смерти». Неожиданной проблемой оказались электроны, находящиеся в слое графита. При контакте с электролитом они начинают разрушать его. Но одно случайное открытие позволило не допустить контакт электронов с электролитом. При первой зарядке элемента, как мы уже говорили, ионы лития движутся сквозь электролит. В процессе этого движения молекулы растворенного в электролите вещества покрывают ионы. Достигнув графитового слоя, ионы лития вместе с молекулами раствора электролита реагируют с графитом, образуя так называемая промежуточную фаза твердого электролита (solid electrolyte interphase, или SEI-слой). Этот слой предотвращает контакт электронов с электролитом, предохраняя электролит от разрушения.
защитный SEI-слой
Вот так проблема случайным образом решилась сама собой. Хотя эффект SEI был открыт случайно, в последующие два десятилетия ученые целенаправленно улучшали процесс, подбирая наиболее эффективную толщину и химический состав.
Заключение
Сегодня уже удивительно, что еще два десятка лет назад в электронных гаджетах не применялись литий-ионные аккумуляторы. Индустрия литий-ионных аккумуляторов развивается с фантастической скоростью: ожидается, что в ближайшие несколько лет их рынок достигнет 90 млрд. долларов. Современные литий-ионные батареи способны выдержать примерно 3000 циклов зарядки-разрядки – это уже приличный показатель, но еще есть, куда расти. Лучшие умы во всем мире трудятся над тем, чтобы повысить их долговечность до 10 000 циклов. В этом случае аккумулятор электромобиля не придется заменять целых 25 лет. Миллионы долларов вкладываются в исследования, которые позволят заменить графит на кремний в качестве «хранилища» в литий-ионных элементах. Если это удастся сделать, их емкость возрастет более чем в пять раз! В настоящее время мир переходит уже на литий-полимерные аккумуляторы, которые показали себя чуточку лучше, чем литий-ионные.
Источник