Элементы для создания солнечных батареи

Содержание
  1. Из чего делают солнечные батареи: особенности строения различных поколений панелей
  2. Краткая история модифицирования: три поколения солнечных батарей
  3. Из чего состоят солнечные батареи первого поколения
  4. 2. Из чего сделаны солнечные батареи второго поколения
  5. 3. Из чего состоит солнечная батарея третьего поколения
  6. Полупроводниковые материалы – из чего делают солнечные батареи сегодня
  7. 4. Из чего сделаны тонкопленочные солнечные батареи CdTe
  8. 5. Особенность строения солнечных панелей типа CIGS
  9. 6. Из чего состоят солнечные батареи типов GaAs и InP
  10. 7. Из чего делают органические солнечные батареи
  11. 8. Из чего состоят солнечные батареи на красителях
  12. 9. Особенности солнечных батарей с квантовыми точками
  13. Физико-технические характеристики, сертификация и маркировка
  14. Из чего можно сделать солнечные батареи своими руками дома
  15. Как сделать солнечную батарею: 5 лучших мастер-классов
  16. Устройство и принципы работы
  17. Преимущества
  18. Разновидности
  19. Кремниевые
  20. Пленочные
  21. Аморфные
  22. Материалы
  23. Выбор фотоэлементов
  24. Расчеты и проект
  25. Этапы работы
  26. Корпус
  27. Пайка элементов
  28. Сборка
  29. Идеи из подручных материалов
  30. Солнечная батарея из фольги
  31. Солнечная батарея из транзисторов
  32. Солнечная батарея из диодов
  33. Солнечная батарея из пивных банок
  34. Видео

Из чего делают солнечные батареи: особенности строения различных поколений панелей

До недавних пор на вопрос «из чего делают солнечные батареи» существовал всего один ответ – из кремниевых ячеек в жесткой раме с толстым защитным стеклом. Сегодня ситуация кардинально изменилась, хотя панели на основе кремния по-прежнему занимают большую часть мирового рынка. При изготовлении фотовольтаики дома, из подручных материалов, такие ячейки также применяются чаще других. Однако перспективные разработки последних лет создаются на совершенно иных технологиях и значительно отличаются от старых моделей конструктивно.

Краткая история модифицирования: три поколения солнечных батарей

Специалисты разделяют все фотоэлектрические устройства, способные поглощать световые фотоны и преобразовывать их в электрический ток, на три поколения.

Читайте также:  Как солнечные панели следят за солнцем

  1. Из чего состоят солнечные батареи первого поколения

Конструктивно такие модули состоят из следующих элементов:

  • металлического листа-основы – базового контакта;
  • нижнего присадочного слоя кремниевого полупроводника с преобладанием электронов n-типа – за счет добавления фосфора;
  • верхнего кристаллического слоя, насыщенного электронами р-типа – обычно, путем легирования бором;
  • антиотражающего покрытия – для максимизации поглощения излучения;
  • тонкого металлизированного контакта сеточного типа с проводом для замыкания сети;
  • толстого защитного стекла – как правило, сверхпрочного закаленного;
  • обрамляющей рамы.

Толщина монокристаллических Mono-Si или поликристаллических Poli-Si кремниевых пластин в ячейках составляет около 200-300 мкм. Срок службы оценивается в 20-25 лет, с падением производительности в среднем на 0,5% ежегодно. КПД при идеальных условиях освещения достигает 22-24% и резко снижается при высоких температурах либо частичном падении освещенности.

2. Из чего сделаны солнечные батареи второго поколения

Следующее поколение батарей использует тот же физический принцип p/n перехода, однако создано на базе комбинаций редкоземельных элементов (реже – аморфного кремния). Вспомогательные конструкционные элементы панелей в большинстве случаев те же – металлическая основа, антиотражающая пленка и защитное стекло. Однако все чаще появляются и безрамные конструкции, а также тонкопленочные варианты, способные сворачиваться в рулоны и изгибаться под любыми углами.

Наиболее частыми полупроводниками для ячеек таких батарей служат:

  • аморфный кремний a-Si;
  • теллурид кадмия (CdTe);
  • селенид индия/галлия/меди (CIGS).

Иногда на предложение привести примеры, из чего делают солнечные батареи тонкопленочного типа, профильные специалисты приводят и другие, более экзотические варианты. Однако их совокупная доля не превышает 0,1% и используется преимущественно в лабораторных исследованиях.

Название «тонкопленочные» происходит от значительно меньшей толщины рабочих слоев – от 1 до 3 мкм, что почти в 100 раз меньше, чем у кремниевой «классики». КПД при идеальных условиях тонких пленок составляет 16-20%. Однако при рассеянном свете и/или больших углах падения излучения панели CdTe / CIGS могут быть более эффективны.

3. Из чего состоит солнечная батарея третьего поколения

Принцип действия панелей 3-го поколения по-прежнему фотоэлектрический, но конструкция принципиально иная. Полупроводниковые материалы в них, за исключением квантовых точек, не используются вовсе, уступая место органике и полимерам.

Такие батареи часто не имеют ни рамы, ни защитного стекла, печатаются на 3D-принтерах либо изготавливаются методом травления, подобно компьютерным платам.

Главное их достоинство – фантастическая дешевизна производства, широчайшие возможности геометрии и прозрачность. Третье поколение – это панели ближайшего будущего, которые будут повсеместно встраиваться в дома, окна, одежду и даже мельчайшие бытовые предметы.

Основной недостаток на сегодня – низкий КПД, составляющий от 0,1 до 7%.

Полупроводниковые материалы – из чего делают солнечные батареи сегодня

Основными полупроводниковыми материалами, которые используются для производства 99% фотоэлектрических ячеек на современном мировом рынке, являются:

  1. Монокристаллический кремний — Выращивается в виде крупных кристаллов по методу профессора Чохральского. Далее кремниевые цилиндрические «чушки» режутся на очень тонкие диски толщиной 0,2-0,4 мм и подвергаются специализированной химической обработке. Практически готовые ячейки обтачиваются, шлифуются, покрываются защитным покрытием и металлизируются. При желании сделать солнечную батарею своими руками такие фотоэлектрические элементы покупаются в магазине, а остальные детали моноблока изготавливаются самостоятельно из подручных материалов.
  2. Поликристаллический кремний — Производится в металлургических тиглях более дешевым методом направленной кристаллизации (block-cast). После расплава кремниевого сырья его медленно остужают, что приводит к образованию «игольчатых» разнонаправленных кристаллов. В эксплуатации такая поверхность чуть хуже монокристалла при идеальной освещенности, но более эффективна в остальных случаях. По этой причине, устанавливая комплект батарей на крышах, на южные скаты часто монтируют Mono-Si, а на юго-западные и юго-восточные – Poli-Si.
  3. Аморфный кремний – из чего делают солнечные батареи этого типа Основой батарей данного типа служит гидрогенезированный кремний с большим коэффициентом лучевого поглощения. Современные модели комбинируют из нескольких слоев, обогащенных германием и углеродом. Это позволяет устранить главный недостаток панелей a-Si – быструю деградацию ячеек.

Такая модификация носит название уже не аморфного, а микроморфного кремния и показывает КПД до 12%. Низкая эффективность компенсируется дешевизной производства, поскольку на такие ячейки элементов требуется в 200 раз меньше полупроводника чем для Mono-Si или Poli-Si.

4. Из чего сделаны тонкопленочные солнечные батареи CdTe

Теллурид кадмия считается лучшим однопереходным полупроводниковым материалом по совокупности трех показателей – поглощающая способность, надежность, стоимость. CdTe значительно производительнее кремния и намного дешевле более эффективных пленок на базе дорогостоящих германия и индия.

Подложка пленки может быть не металлической, а стеклянной, а сами ячейки – полужесткими или гибкими. CdTe отличается стабильностью, долговечностью, малой чувствительностью к изменению освещения и быстро растущим КПД новых поколений модулей.

5. Особенность строения солнечных панелей типа CIGS

Основой батарей на сульфидах редкоземельных элементов является композитное смешение галлия, индия и меди. Такие панели являются «чемпионами» по КПД и стойкости, но стоят очень дорого.

Коммерческое применение пока ограничено только космосом и авиационной отраслью, поскольку добыча индия и галлия на планете ограничена всего несколькими сотнями тонн в год. Даже если бы все они пошли на изготовление батарей, общая мощность панелей едва достигла бы 10 ГВт.

6. Из чего состоят солнечные батареи типов GaAs и InP

Базовыми редкоземельными элементами этой группы панелей служат арсенид галлия GaAs и фосфид индия InP. Отличительная черта обоих вариантов ячеек – практически полное сохранение КПД при температурах в несколько сотен градусов Цельсия.

Применение их на земле финансово нецелесообразно, но практически все солнечные панели космических спутников, зондов, МКС и телескопов сделаны именно на их основе. Теоретический КПД этой группы, при условии использовании в конструкции дополнительных концентраторов, может достигать 85%. Практические рекорды сегодня колеблются в зоне 35-45%.

7. Из чего делают органические солнечные батареи

Несмотря на низкий КПД (лабораторный рекорд на сегодня – 10,8%, коммерческие прототипы – до 7%) панели на органической основе 3-го поколения сегодня активно исследуются. Для полимеров органического происхождения характерны следующие важные черты:

  • простота и дешевизна создания;
  • отсутствие проблем с утилизацией;
  • неограниченность сфер применения;
  • возможность изготовления в прозрачном виде.

Подобные панели практически невесомы, а при использовании технологии «tandem solar batteries» (тандемное соединение) их можно встраивать в окна и регулировать прозрачность.

8. Из чего состоят солнечные батареи на красителях

Конструктивно в них присутствует тонкая стеклянная подложка и напыляемая токопроводящая «краска». Ее основой является нанокристаллические «катод» и «анод», а также неагрессивный электролит – например, диоксид титана. Удобство использования состоит в возможности получения любых цветовых оттенков и нанесения на любые поверхности сверхтонким слоем.

9. Особенности солнечных батарей с квантовыми точками

Последний перспективный вид батарей ближайшего будущего построен на свойствах физических квантовых точек – микроскопических включений полупроводников в тот или иной материал. Геометрически такие «точки» имеют размер в несколько нанометров и распределяются в материале так, чтобы охватить поглощение излучения всего солнечного спектра – ИК, видимого света и УФ.

Огромным преимуществом подобных панелей является возможность работать даже ночью, генерируя около 40% максимальной дневной мощности.

Физико-технические характеристики, сертификация и маркировка

Независимо от того, из чего сделаны солнечные батареи, каждая из них обладает рядом следующих важных характеристик:

  • механические – геометрические параметры, общая масса, тип рамы, защитного стекла, количество ячеек, вид и ширина коннекторов;
  • электрические или вольтамперные – мощность, напряжение холостого хода, сила тока при максимальной нагрузке, эффективность панели в целом и отдельных ячеек в частности;
  • температурные – изменение КПД при повышении температуры на определенную единицу величины (обычно – 1 градус);
  • качественные – срок службы, скорость деградации ячеек, присутствие в рейтинговых списках Bloomberg;
  • функциональные – необходимость и удобство ухода, простота монтажа/демонтажа.

Промышленные солнечные панели, из каких бы материалов они не были сделаны, обязательно должны быть сертифицированы. Минимальными требованиями являются сертификаты качества ISO, СE, TUV (международные) и/или Таможенного союза (при продаже в его пределах).

Обязательной является и международные правила маркировки. Например, аббревиатура CHN-350M-72 содержит следующие сведения:

  • CHN – идентификатор компании-изготовителя (в данном случае – китайской СhinaLand);
  • 350 – мощность панели в ваттах;
  • M – обозначение монокристаллического кремния;
  • 72 – число фотоэлектрических ячеек в модуле.

Из чего можно сделать солнечные батареи своими руками дома

Для этого необходимо следующее:

  1. Предварительно начерченная схема и проведенные расчеты.
  2. Определенное количество солнечных ячеек заводского изготовления – купить их дешевле всего в сети, например, на сайте Aliexpress или в других сетевых магазинах. Обращайте внимание на то, чтобы все элементы имели одинаковые электрические характеристики.
  3. Самодельный каркас из бруса и фанеры – правила его сборки можно посмотреть на многочисленных видео в сети.
  4. Оргстекло или плексиглас для поверхностного защитного покрытия.
  5. Краска и термостойкий клей для обработки деревянных поверхностей.
  6. Контактные полосы и провода для соединения ячеек. Схемы различные способов соединения также можно изучить в интернете.
  7. Паяльник и припой. Паяльные работы следует проводить очень внимательно, чтобы не испортить будущее изделие.
  8. Силиконовый клей и саморезы для закрепления сборной батареи в каркасе.

Небольшая батарея потребует около 30-50 долларов вложений, в то время как заводской вариант аналогичной мощности обойдется всего на 10-20% дороже. Разумеется, подобная самодельная конструкция не прослужит 25 лет, не будет обладать мощностью полноценной солнечной электростанции и не сможет похвастаться значительным КПД. Однако стоимость ее будет минимальной настолько, насколько это возможно.

Источник

Как сделать солнечную батарею: 5 лучших мастер-классов

Человечество в целях заботы об экологии и экономии денежных средств начало использовать альтернативные источники энергии, к которым, в частности, принадлежат солнечные батареи. Покупка такого удовольствия обойдется довольно дорого, но не составляет сложности сделать данное устройство своими руками. Поэтому вам не помешает узнать, как самому сделать солнечную батарею. Об этом и пойдет речь в нашей статье.

Устройство и принципы работы

Солнечные батареи — устройства, генерирующие электроэнергию с помощью фотоэлементов.

Прежде чем говорить о том, как сделать солнечную батарею своими руками, необходимо понять устройство и принципы ее работы. Солнечная батарея включает в себя фотоэлементы, соединенные последовательно и параллельно, аккумулятор, накапливающий электроэнергию, инвертор, преобразующий постоянный ток в переменный и контроллер, следящий за зарядкой и разрядкой аккумулятора.

Как правило, фотоэлементы изготавливают из кремния, но его очистка обходится дорого, поэтому в последнее время начали использовать такие элементы, как индий, медь, селен.

Каждый фотоэлемент является отдельной ячейкой, генерирующей электроэнергию. Ячейки сцеплены между собой и образуют единое поле, от площади которого зависит мощность батареи. То есть, чем больше фотоэлементов, тем больше электроэнергии генерируется.

Для того чтобы изготовить солнечную панель своими руками в домашних условиях, необходимо понимать сущность такого явления, как фотоэффект. Фотоэлемент – кремниевая пластинка, при попадании света на которую с последнего энергетического уровня атомов кремния выбивается электрон. Передвижение потока таких электронов вырабатывает постоянный ток, который впоследствии преобразуется в переменный. В этом и заключается явление фотоэффекта.

Преимущества

Солнечные батареи имеют следующие преимущества:

  • безвредность для экологии;
  • долговечность;
  • бесшумная работа;
  • легкость изготовления и монтажа;
  • независимость поставки электричества от распределительной сети;
  • неподвижность частей устройства;
  • незначительные финансовые затраты;
  • небольшой вес;
  • работа без механических преобразователей.

Разновидности

Солнечные батареи подразделяются на следующие виды.

Кремниевые

Кремний — самый популярный материал для батарей.

Кремниевые батареи также делятся на:

  1. Монокристаллические: для производства таких батарей используется очень чистый кремний.
  2. Поликристаллические (дешевле монокристаллических): поликристаллы получают постепенным охлаждением кремния.

Пленочные

Такие батареи подразделяются на следующие виды:

  1. На основе теллурида кадмия (КПД 10%): кадмий обладает высоким коэффициентом светопоглощения, что и позволяет использовать его в производстве батарей.
  2. На основе селенида меди — индия: КПД выше, чем у предыдущих.
  3. Полимерные.

Солнечные батареи из полимеров начали изготавливать относительно недавно, обычно для этого используют фуреллены, полифенилен и др. Пленки из полимеров очень тонкие, порядка 100 нм. Несмотря на КПД 5%, батареи из полимеров имеют свои преимущества: дешевизна материала, экологичность, эластичность.

Аморфные

КПД аморфных батарей составляет 5%. Такие панели изготавливаются из силана (кремневодорода) по принципу пленочных батарей, поэтому их можно отнести, как к кремниевым, так и к пленочным. Аморфные батареи эластичны, генерируют электричество даже в непогоду, поглощают свет лучше других панелей.

Материалы

Для изготовления солнечной батареи потребуются следующие материалы:

  • фотоячейки;
  • алюминиевые уголки;
  • диоды Шоттки;
  • силиконовые герметики;
  • проводники;
  • крепежные винты и метизы;
  • поликарбонатный лист/оргстекло;
  • паяльное оборудование.

Эти материалы обязательны для того, чтобы сделать солнечную батарею своими руками.

Выбор фотоэлементов

Чтобы сделать солнечную батарею для дома своими руками, следует правильно подобрать фотоэлементы. Последние подразделяются на монокристаллические, поликристаллические и аморфные.

КПД первых составляет 13%, но такие фотоэлементы малоэффективны в непогоду, внешне представляют собой ярко-синие квадраты. Поликристаллические фотоэлементы способны генерировать электроэнергию даже в непогоду, хотя их КПД всего лишь 9%, внешне темнее монокристаллических и срезаны по краям. Аморфные фотоячейки изготавливаются из гибкого кремния, их КПД составляет 10%, работоспособность не зависит от погодных условий, но изготовление таких ячеек слишком затратное, поэтому их редко используют.

Если вы планируете применять генерируемую фотоэлементами электроэнергию на даче, то советуем собрать солнечную батарею своими руками из поликристаллических ячеек, так как их КПД достаточно для ваших целей.

Следует покупать фотоячейки одной марки, так как фотоэлементы нескольких марок могут сильно отличаться — это может стать причиной возникновения проблем со сборкой батареи и ее функционированием. Следует помнить, что количество производимой ячейкой энергии прямо пропорционально ее размеру, то есть чем крупнее фотоячейка, тем больше электроэнергии она производит; напряжение ячейки зависит от ее типа, а никак не от размера.

Количество производимого тока определяется габаритами самого маленького фотоэлемента, поэтому следует покупать фотоячейки одинакового размера. Конечно же, не стоит приобретать дешевую продукцию, ведь это значит, что она не прошла проверку. Также не следует покупать фотоэлементы, покрытые воском (многие производители покрывают фотоячейки воском для сохранности продукции при перевозке): при его удалении можно испортить фотоэлемент.

Расчеты и проект

Устройство солнечной панели своими руками — несложная задача, главное, подойти к ее выполнению ответственно. Чтобы изготовить солнечную панель своими руками, следует подсчитать дневное потребление электроэнергии, затем узнать среднесуточное солнечное время в вашей местности и рассчитать нужную мощность. Таким образом, станет понятно, сколько ячеек и какого размера нужно приобрести. Ведь как было сказано выше, генерируемый ячейкой ток зависит от ее габаритов.

Зная необходимый размер ячеек и их количество, нужно рассчитать габариты и вес панели, после чего необходимо выяснить выдержит ли кровля или другое место, куда планируется установка солнечной батареи, задумываемую конструкцию.

Устанавливая панель, следует не только выбрать самое солнечное место, но и постараться закрепить ее под прямым углом к солнечным лучам.

Этапы работы

Корпус

Прежде чем начать делать солнечную панель своими руками, необходимо соорудить для нее каркас. Он защищает батарею от повреждений, влаги и пыли.

Корпус собирается из влагостойкого материала: фанеры, покрытой влагоотталкивающим средством, или алюминиевых уголков, к которым силиконовым герметиком приклеивается оргстекло или поликарбонат.

При этом нужно соблюдать отступы между элементами (3-4 мм), так как необходимо учитывать расширение материала при повышении температуры.

Пайка элементов

Фотоэлементы выкладываются на лицевую сторону прозрачной поверхности, так, чтобы расстояние между ними со всех сторон было 5 мм: таким образом учитывается возможное расширение фотоячеек при повышении температуры.

Фиксируются преобразователи, имеющие два полюса: положительный и отрицательный. Если вы хотите увеличить напряжение, соединяйте элементы последовательно, если ток — параллельно.

Во избежание разрядки аккумулятора ночью, в единую цепь, состоящую из всех необходимых деталей, включают диод Шоттки, подсоединяя его к плюсовому проводнику. Затем все элементы спаивают между собой.

Сборка

В готовый каркас размещаются спаянные преобразователи, на фотоячейки наносится силикон — все это накрывается слоем из ДВП, закрывается крышкой, а места соединений деталей обрабатываются герметиком.

Даже городской житель может сделать и разместить солнечную батарею на балконе своими руками. Желательно, чтобы балкон был застеклен и утеплен.
Вот мы и разобрали, как сделать солнечную батарею в домашних условиях, оказалось, это совсем несложно.

Идеи из подручных материалов

Можно сделать солнечную батарею своими руками из подручных материалов. Рассмотрим самые популярные варианты.

Солнечная батарея из фольги

Многие удивятся, узнав, что фольгу можно применять для изготовления солнечной батареи своими руками. На самом деле, в этом нет ничего удивительного, ведь фольга увеличивает отражающие способности материалов. Например, для уменьшения перегрева панелей, их кладут на фольгу.

Как сделать солнечную батарею из фольги?

  • 2 «крокодильчика»;
  • медная фольга;
  • мультиметр;
  • соль;
  • пустая пластиковая бутылка без горлышка;
  • электрическая печь;
  • дрель.

Очистив медный лист и вымыв руки, отрезаем кусок фольги, кладем его на раскаленную электроплиту, нагреваем полчаса, наблюдая почернение, затем убираем фольгу с плиты, даем остыть и видим, как от листа отслаиваются куски. После нагревания оксидная пленка пропадает, поэтому черный оксид можно аккуратно удалить водой.

Затем вырезается второй кусок фольги такого же размера, как и первый, две части сгибаются, опускаются в бутылку так, чтобы у них не было возможности соприкоснуться.

Далее «крокодильчики» прицепляются к панели, провод от ненагретой фольги — к плюсу, от нагретой — к минусу, соль растворяют в воде и выливают раствор в бутылку. Батарея готова.

Также фольгу можно применять для подогрева. Для этого ее необходимо натянуть на раму, к которой затем нужно подсоединить шланги, подведенные, например, к лейке с водой.

Вот мы и узнали, как самому сделать солнечную батарею для дома из фольги.

Солнечная батарея из транзисторов

У многих дома завалялись старые транзисторы, но не все знают, что они вполне подойдут для изготовления солнечной батареи для дачи своими руками. Фотоэлементом в таком случае является полупроводниковая пластина, находящаяся внутри транзистора. Как же изготовить солнечную батарею из транзисторов своими руками? Сначала необходимо вскрыть транзистор, для чего достаточно срезать крышку, так мы сможем разглядеть пластину: она небольших размеров, чем и объясняется низкий КПД солнечных батарей из транзисторов.

Далее нужно проверить транзистор. Для этого используем мультиметр: подключаем прибор к транзистору с хорошо освещенным p-n переходом и замеряем ток, мультиметр должен зафиксировать ток от нескольких долей миллиампера до 1 или чуть больше; далее переключаем прибор в режим измерения напряжения, мультиметр должен выдать десятые доли вольта.

Прошедшие проверку транзисторы размещаем внутри корпуса, например, листового пластика и спаиваем. Можно изготовить такую солнечную батарею своими руками в домашних условиях и использовать ее для зарядки аккумуляторов и радиоприемников маленькой мощности.

Солнечная батарея из диодов

Также подходят для сборки батарей старые диоды. Сделать солнечную батарею своими руками из диодов совсем несложно. Нужно вскрыть диод, оголив кристалл, являющийся фотоэлементом, затем нагревать диод 20 секунд на газовой плите, и, когда припой расплавится, извлечь кристалл. Остается припаять вытащенные кристаллы к корпусу.

Мощность таких батарей невелика, но для электропитания небольших светодиодов ее достаточно.

Солнечная батарея из пивных банок

Такой вариант изготовления солнечной батареи своими руками из подручных средств большинству покажется очень странным, но сделать солнечную батарею своими руками из пивных банок просто и дешево.

Корпус сделаем из фанеры, на которую поместим поликарбонат или оргстекло, на задней поверхности фанеры зафиксируем пенопласт или стекловату для изоляции. Фотоэлементами нам послужат алюминиевые банки. Важно выбрать именно банки из алюминия, так как алюминий менее подвержен коррозии, чем, например, железо и обладает лучшим теплообменом.

Далее в нижней части банок проделываются отверстия, крышка срезается, и ненужные элементы загибаются для обеспечения лучшей циркуляции воздуха. Затем необходимо очистить банки от жира и грязи с помощью специальных средств, не содержащих кислоты. Далее необходимо герметично скрепить банки между собой: силиконовым гелем, выдерживающим высокие температуры, или паяльником. Обязательно нужно очень хорошо просушить склеенные банки в неподвижном положении.

Прикрепив банки к корпусу, окрашиваем их в черный цвет и закрываем конструкцию оргстеклом или поликарбонатом. Такая батарея способна нагревать воду или воздух с последующей подачей в помещение.

Мы рассмотрели варианты того, как сделать солнечную панель своими руками. Надеемся, что теперь у вас не возникнет вопроса, как сделать солнечную батарею.

Видео

Как сделать солнечные батареи своими руками – видео урок.

Источник

Оцените статью