В.1. Принцип действия электрических генераторов и двигателей
Николаева, С. И.
Электрические машины и трансформаторы: учеб. пособие / С. И. Николаева. – Волгоград : ИУНЛ ВолгГТУ, 2011. –112 с.
Рассмотрены конструкция, принцип работы, характеристики и особенности применения трансформаторов, машин постоянного и переменного тока. Приведены примеры расчета трехфазных трансформаторов, двигателей постоянного тока и асинхронных двигателей.
Может быть рекомендовано к использованию при изучении курсов «Электромеханические системы», «Общая электротехника», «Электротехника и электроника» студентами технических специальностей высших учебных заведений, а также при выполнении разделов курсовых и дипломных работ.
Ил. 53. Библиогр. 6 назв.
ISBN 978–5–9948–0695–1 © Волгоградский государственный
технический университет, 2011
ВВЕДЕНИЕ
В.1. Принцип действия электрических генераторов и двигателей
Электрические машины широко распространены в различных отраслях народного хозяйства, энергетике, быту. Связано это с их высокими энергетическими показателями, удобством обслуживания и управления. Существует большое разнообразие электромашин по назначению, принципу действия, мощности, размерам.
Электрические машины – это электромеханические преобразователи, в которых происходит преобразование электрической энергии в механическую (электрические двигатели) или механической – в электрическую (электрические генераторы).
В основе принципа действия электрических генераторов лежит закон электромагнитной индукции:
(1)
Согласно этому закону при вращении проводника в магнитном поле в нем индуцируется ЭДС е. B – индукция магнитного поля в точке расположения проводника, l – активная длина проводника (длина проводника, на протяжении которой он находится в магнитном поле), – скорость движение проводника в магнитном поле. Направление ЭДС определяется по правилу правой руки.
Для увеличения ЭДС в магнитном поле располагают не один, а ряд последовательно соединенных проводников, которые образуют обмотку. Обмотка располагается на сердечнике, выполненном из стали. Та часть машины, на которой располагается обмотка, в которой индуцируется основная ЭДС, называется якорем, а сама обмотка – обмоткой якоря. По обмотке якоря протекает ток нагрузки.
Магнитное поле электрической машины сосредоточено в магнитной системе, которая выполняется из ферромагнитных материалов. Это позволяет получить более сильное магнитное поле. Конструктивно магнитная система электрической машины состоит из вращающейся части и неподвижной части , между которыми имеется воздушный зазор (рис. 1). Неподвижная часть магнитной системы вместе с размещенной на ней обмоткой и корпусом, называется статором. Вращающаяся часть магнитной системы с обмоткой называется ротором. Ротор вращается в подшипниках.
1 – статор, 2 – ротор, 3 – подшипниковые щиты, 4 – подшипники
Рис. 1. Магнитная система трансформатора
В зависимости от назначения и типа машины обмотка якоря может располагаться на роторе или на статоре. Ротор вращается в подшипниках. Тогда на другой части машины располагается обмотка возбуждения, создающая магнитное поле в машине. В генераторах ротор приводится во вращение посторонним двигателем (турбиной), который называется приводным двигателем. Если к обмотке якоря подключить внешнее сопротивление, то по обмотке потечет ток и машина будет отдавать электрическую энергию в нагрузку.
Электродвигатели конструктивно устроены так же, как и электрогенераторы. Для работы машины в режиме двигателя необходимо подвести напряжение к обмотке якоря. Тогда по проводникам обмотки якоря потечет ток, при взаимодействии которого с магнитным полем возникает момент, приводящий во вращение ротор двигателя. Направление вращения определяется правилом левой руки.
Электрические генераторы являются основными источниками электрической энергии. Электрические двигатели приводят в движение станки, транспортные средства и другие механизмы. Более половины всей вырабатываемой электрической энергии потребляют электродвигатели.
Электрические машины обладают свойством обратимости. Это означает, что взаимное преобразование энергии может происходить в любом направлении, то есть, по принципу действия электрическая машина может работать как в режиме генератора (если к ней подводится механическая энергия, преобразуемая в электрическую), так и в режиме двигателя (если к машине подводится электрическая энергия для преобразования в механическую). Вместе с тем конструктивно любая машина предназначена для работы в каком-то одном режиме.
Источник
Процесс преобразования энергии в электрических машинах
Электрические машины разделяют по назначению на два основных вида: электрические генераторы и электрические двигатели . Генераторы предназначены для выработки электрической энергии, а электродвигатели — для приведения в движение колесных пар локомотивов, вращения валов вентиляторов, компрессоров и т. п.
В электрических машинах происходит процесс преобразования энергии. Генераторы преобразуют механическую энергию в электрическую. Это означает, что для работы генератора надо вращать его вал каким-либо двигателем. На тепловозе, например, генератор приводят во вращение дизелем, на тепловой электростанции — паровой турбиной, на гидроэлектростанции — водяной турбиной.
Электрические двигатели, наоборот, преобразуют электрическую энергию в механическую. Поэтому для работы двигателя его надо соединить проводами с источником электрической энергии, или, как говорят, включить в электрическую сеть.
Принцип действия любой электрической машины основан на использовании явлений электромагнитной индукции и возникновения электромагнитных сил при взаимодействии проводников с током и магнитного поля. Эти явления имеют место при работе как генератора, так и электродвигателя. Поэтому часто говорят о генераторном и двигательном режимах работы электрических машин.
Во вращающихся электрических машинах в процессе преобразования энергии участвуют две основные части: якорь и индуктор со своими обмотками, которые перемещаются относительно друг друга. Индуктор создает в машине магнитное поле . В обмотке якоря индуцируется э. д. с. и возникает электрический ток. При взаимодействии тока в обмотке якоря с магнитным полем создаются электромагнитные силы, посредством которых реализуется процесс преобразования энергии в машине.
Об осуществлении в электрической машине энергопреобразовательного процесса
Из основных электроэнергетических теорем Пуанкаре и Баркгаузена вытекают следующие положения:
1) непосредственное взаимообратное преобразование механической и электрической энергии возможно только в том случае, если электрическая энергия является энергией переменного электрического тока;
2) для осуществления процесса такого энергопреобразования необходимо, чтобы в системе электрических контуров, предназначаемых для этой цели, была либо изменяющаяся электрическая индуктивность, либо изменяющаяся электрическая емкость,
3) для осуществления преобразования энергии переменного электрического тока в энергию постоянного электрического тока, необходимо, чтобы в предназначаемой для этой цели системе электрических контуров имелось изменяющееся электрическое сопротивление.
Из первого положения следует, что механическая энергия может преобразоваться в электрической машине только в энергию переменного электрического тока или обратно.
Кажущееся противоречие этого утверждения с фактом существования электрических машин постоянного тока разрешается тем, что в «машине постоянного тока» мы имеем двустадийное преобразование энергии.
Так, в случае электромашинного генератора постоянного тока мы имеем машину, в которой механическая энергия преобразуется в энергию переменного тока, а эта последняя, вследствие наличия особого устройства, представляющего собой «изменяющееся электрическое сопротивление», преобразуется в энергию постоянного тока.
В случае электромашинного двигателя процесс идет, очевидно, в обратном направлении: подводимая к электромашинному двигателю энергия постоянного электрического тока преобразуется посредством упомянутого изменяющегося сопротивления в энергию переменного электрического тока, а последняя — в энергию механическую.
Роль упомянутого изменяющегося электрического сопротивления выполняет «скользящий электрический контакт», который в обычной «коллекторной машине постоянного тока» состоит из «электромашинной щетки» и «электромашинного коллектора», а в «униполярной электрической машине постоянного тока» из «электромашинной щетки» и «электромашинных контактных колец».
Так как для создания в электрической машине процесса энергопреобразования необходимо наличие в ней или «изменяющейся электрической индуктивности», или «изменяющейся электрической емкости», то электрическую машину можно выполнить либо на принципе электромагнитной индукции, либо на принципе электрической индукции. В первом случае получаем «индуктивную машину», во втором — «емкостную машину».
Емкостные машины не имеют пока практического значения. Применяемые в промышленности, на транспорте и в быту электрические машины представляют собой индуктивные машины, за которыми на практике укоренилось краткое наименование «электрическая машина», являющееся, по существу, более широким понятием.
Принцип действия электрического генератора.
Простейшим электрическим генератором является виток, вращающийся в магнитном поле (рис. 1, а). В этом генераторе виток 1 представляет собой обмотку якоря. Индуктором служат постоянные магниты 2, между которыми вращается якорь 3.
Рис. 1. Принципиальные схемы простейших генератора (а) и электродвигателя (б)
При вращении витка с некоторой частотой вращения n его стороны (проводники) пересекают магнитные силовые линии потока Ф и в каждом проводнике индуцируется э. д. с. е. При принятом на рис. 1, а направлении вращения якоря э. д. с. в проводнике, расположенном под южным полюсом, согласно правилу правой руки направлена от нас, а э. д. с. в проводнике, расположенном под северным полюсом, — к нам.
Если подключить к обмотке якоря приемник электрической энергии 4, то по замкнутой цепи пойдет электрический ток I. В проводниках обмотки якоря ток I будет направлен так же, как и э. д. с. е.
Выясним, почему для вращения якоря в магнитном поле приходится затрачивать механическую энергию, получаемую от дизеля или турбины (первичного двигателя). При прохождении тока i по расположенным в магнитном поле проводникам на каждый проводник действует электромагнитная сила F.
При указанном на рис. 1, а направлении тока согласно правилу левой руки на проводник, расположенный под южным полюсом, будет действовать сила F, направленная влево, а на проводник, расположенный под северным полюсом, — сила F, направленная вправо. Указанные силы создают совместно электромагнитный момент М, направленный по часовой стрелке.
Из рассмотрения рис. 1, а видно, что электромагнитный момент М, возникающий при отдаче генератором электрической энергии, направлен в сторону, противоположную вращению проводников, поэтому он является тормозным моментом, стремящимся замедлить вращение якоря генератора.
Для того чтобы предотвратить остановку якоря, требуется к валу якоря приложить внешний вращающий момент Мвн, противоположный моменту М и равный ему по величине. С учетом же трения и других внутренних потерь в машине внешний вращающий момент должен быть больше электромагнитного момента М, созданного током нагрузки генератора.
Следовательно, для продолжения нормальной работы генератора к нему необходимо подводить извне механическую энергию — вращать его якорь каким-либо двигателем 5.
При отсутствии нагрузки (при разомкнутой внешней цепи генератора) имеет место режим холостого хода генератора. В этом случае от дизеля или турбины требуется только такое количество механической энергии, которое необходимо для преодоления трения и компенсации других внутренних потерь энергии в генераторе.
При увеличении нагрузки генератора, т. е. отдаваемой им электрической мощности Рэл, увеличиваются ток I, проходящий по проводникам обмотки якоря, и создаваемый им тормозящий момент М. Следовательно, должна быть соответственно увеличена и механическая мощность Рмх, которую генератор должен получить от дизеля или турбины, для продолжения нормальной работы.
Таким образом, чем больше электрической энергии потребляется, например, электродвигателями тепловоза от тепловозного генератора, тем больше механической энергии забирает он от вращающего его дизеля и тем больше топлива необходимо подавать дизелю.
Из рассмотренных выше условий работы электрического генератора следует, что характерным для него является:
1. совпадение по направлению тока i и э. д. с. в проводниках обмотки якоря. Это указывает на то, что машина отдает электрическую энергию;
2. возникновение электромагнитного тормозного момента М, направленного против вращения якоря. Из этого вытекает необходимость получения машиной извне механической энергии.
Принцип действия электрического двигателя.
Принципиально электродвигатель выполнен так же, как генератор. Простейший электродвигатель представляет собой виток 1 (рис. 1,б), расположенный на якоре 3, который вращается в магнитном поле полюсов 2. Проводники витка образуют обмотку якоря.
Если подключить виток к источнику электрической энергии, например к электрической сети 6, то по каждому его проводнику начнет проходить электрический ток I. Этот ток, взаимодействуя с магнитным полем полюсов, создает электромагнитные силы F.
При указанном на рис. 1, б направлении тока на проводник, расположенный под южным полюсом, будет действовать сила F, направленная вправо, а на проводник, лежащий под северным полюсом,— сила F, направленная влево. В результате совместного действия этих сил создается электромагнитный вращающий момент М, направленный против часовой стрелки, приводящий якорь с проводником во вращение с некоторой частотой n . Если соединить вал якоря с каким-либо механизмом или устройством 7 (колесной парой тепловоза или электровоза, станком и пр.), то электродвигатель будет приводить это устройство во вращение, т. е. отдавать ему механическую энергию. При этом внешний момент Мвн, создаваемый этим устройством, будет направлен против электромагнитного момента М.
Выясним, почему при вращении якоря электродвигателя, работающего под нагрузкой, расходуется электрическая энергия. Как было установлено, при вращении проводников якоря в магнитном поле в каждом проводнике индуцируется э. д. с, направление которой определяется но правилу правой руки. Следовательно, при указанном на рис. 1, б направлении вращение э. д. с. е, индуцированная в проводнике, расположенном под южным полюсом, будет направлена от нас, а э. д. с. е, индуцированная в проводнике, расположенном под северным полюсом, будет направлена к нам. Из рис. 1, б видно, что э. д. с. е, индуцированные в каждом проводнике, направлены против тока i, т. е. они препятствуют его прохождению по проводникам.
Для того чтобы ток i продолжал проходить по проводникам якоря в прежнем направлении, т. е. чтобы электродвигатель продолжал нормально работать и развивать требуемый вращающий момент, необходимо приложить к этим проводникам внешнее напряжение U, направленное навстречу э. д. с. и большее по величине чем суммарная э. д. с. Е, индуцированная во всех последовательно соединенных проводниках обмотки якоря. Следовательно, необходимо подводить к электродвигателю из сети электрическую энергию.
При отсутствии нагрузки (внешнего тормозного момента, приложенного к валу двигателя) электродвигатель потребляет от внешнего источника (сети) небольшое количество электрической энергии и по нему проходит небольшой ток холостого хода. Эта энергия расходуется на покрытие внутренних потерь мощности в машине.
При возрастании нагрузки увеличивается потребляемый электродвигателем ток и развиваемый им электромагнитный вращающий момент. Следовательно, увеличение механической энергии, отдаваемой электродвигателем при возрастании нагрузки, вызывает автоматически увеличение электроэнергии, забираемой им от источника.
Из рассмотренных выше условий работы электрического двигателя следует, что характерным для него является:
1. совпадение по направлению электромагнитного момента М и частоты вращения n. Это характеризует отдачу машиной механической энергии;
2. возникновение в проводниках обмотки якоря э. д. с., направленной против тока i и внешнего напряжения U. Из этого вытекает необходимость получения машиной извне электрической энергии.
Принцип обратимости электрических машин
Рассматривая принцип действия генератора и электродвигателя, мы установили, что устроены они одинаково и что в основе работы этих машин много общего.
Процесс преобразования механической энергии в электрическую в генераторе и электрической энергии в механическую в двигателе связан с индуцированием э. д. с. во вращающихся в магнитном поле проводниках обмотки якоря и возникновением электромагнитных сил в результате взаимодействия магнитного поля и проводников с током.
Отличие генератора от электродвигателя заключается только во взаимном направлении э. д. с, тока, электромагнитного момента и частоты вращения.
Обобщая рассмотренные процессы работы генератора и электродвигателя, можно установить принцип обратимости электрических машин . Согласно этому принципу любая электрическая машина может работать и генератором и электродвигателем и переходить из генераторного режима в двигательный и наоборот.
Рис. 2. Направление э. д. с. Е, тока I, частоты вращения якоря n и электромагнитного момента М при работе электрической машины постоянного тока в двигательном (а) и генераторном (б) режимах
Для выяснения этого положения рассмотрим работу электрической машины постоянного тока при различных условиях. Если внешнее напряжение U больше суммарной э. д. с. E. во всех последовательно соединенных проводниках обмотки якоря, то ток I будет проходить в указанном на рис. 2, а направлении и машина будет работать электродвигателем, потребляя из сети электрическую энергию и отдавая механическую.
Однако если по какой-либо причине э. д. с. Е станет больше внешнего напряжения U, то ток I в обмотке якоря изменит свое направление (рис. 2, б) и будет совпадать с э. д. с. Е. При этом изменится и направление электромагнитного момента М, который будет направлен против частоты вращения n . Совпадение по направлению э. д. с. Е и тока I означает, что машина стала отдавать в сеть электрическую энергию, а появление тормозного электромагнитного момента М говорит о том, что она должна потреблять извне механическую энергию.
Следовательно, когда э. д. с. Е, индуцированная в проводниках обмотки якоря, становится больше напряжения сети U, машина переходит из двигательного режима работы в генераторный, т. е. при E U машина работает двигателем, при E > U — генератором.
Перевод электрической машины из двигательного режима в генераторный можно осуществить различными способами: уменьшая напряжение U источника, к которому подключена обмотка якоря, или увеличивая э. д. с. E в обмотке якоря.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Источник