- Солнечные батареи
- Самые необычные альтернативные источники электроэнергии
- Энергия из морских волн
- Энергия из ДНК
- Респираторы с солнечными батареями
- Солнечные паруса
- «Бесконечная» энергия из воздуха
- Электричество из дерева
- Жидкое топливо из солнечной энергии
- Сколько времени нужно двум солнечным панелям, чтобы зарядить аккумулятор на 100Ah. Провел эксперимент
Солнечные батареи
Наряду с энергией ветра можно попытаться использовать и энергию Солнца.
Генерацию электричества под воздействием солнечного света (фотовольтаический (фотоэлектрический) эффект, англ. photovoltaic effect) впервые наблюдал в 1839 году Александр Эдмон Беккерель (фр. Alexandre-Edmond Becquerel):
Параметры солнечной батареи
Одна фотовольтаическая ячейка (англ. solar cell) вырабатывает в режиме холостого хода (англ. open-circuit voltage (OCV)) напряжение 0,55 В. Солнечная батарея составлена из таких последовательно и параллельно включенных ячеек.
внешняя характеристика (англ. I/V curve) солнечной панели
$V_
$I_
Точке максимальной мощности соответствует напряжение на одной ячейке около 0,45 В ($V_
Исследование моих солнечных батарей
Я приобрел на торговой площадке ebay три солнечные батареи:
Номинальные параметры: напряжение 5 В, мощность 1 Вт.
напряжение холостого хода
Нагруженная на резистор сопротивлением 100 Ом в солнечный сентябрьский день моя батарея выдает напряжение около 3,5 вольт при горизонтальном расположении батареи и 5 вольт при расположении панели перпендикулярно солнечным лучам. В пасмурный день напряжение составило около 0,3 вольта.
ток короткого замыкания
В начале апреля горизонтально расположенная батарея в течение солнечного дня с небольшой облачностью (5-6 часов) обеспечивает ток короткого замыкания 40 . 60 мА:
Зарядка аккумулятора от солнечной батареи
Для проверки возможности заряда аккумуляторов от солнечной батареи я подключил эту батарею через германиевый диод Д310 к полностью разряженному (напряжение холостого хода 1,1 вольта) никель-кадмиевому аккумулятору GP емкостью 1000 мАч и разместил на горизонтальной достаточно открытой поверхности:
После окончания заряда в течение двух солнечных июньских дней напряжение холостого хода составило 1,380 В. При подключении нагрузки в виде резистора сопротивлением 6,8 Ом напряжение составило 1,327 В и снизилось до уровня 1,1 В через 180 минут, а до уровня 0,9 В — через 195 минут непрерывного разряда (эффективная емкость аккумулятора составила при этом
500 мА·ч).
Таким образом, эксперимент по зарядке никель-кадмиевого аккумулятора можно признать успешным.
Зарядка ионистора от солнечной батареи
Также можно использовать солнечную батарею для заряда ионистора.
Ионистор (суперконденсатор, англ. supercapacitor) представляет собой гибрид конденсатора и химического источника тока. Ток утечки ионистора достаточно велик и обычно составляет 1 мкА на 1 Ф емкости. Также у ионистора заметно проявление эффекта диэлектрической абсорбции.
Я располагаю двумя ионисторами —
- ионистор 5R5D11F22H емкостью 0,22 Ф на напряжение 5,5 В
- ионистор емкостью 100 Ф на напряжение 2,7 В (приобретен на ebay)
Я использовал для эксперимента с солнечной батареей ионистор на 100 Ф.
Внутреннее устройство этого ионистора после его разборки:
1 — угольная прослойка
2 — металлическая пластина
Для ионистора важно не превышать предельно допустимое напряжение (в моем случае 2,7 В). Для ограничения напряжения я использовал шунтовой регулятор — параллельно подключенный к солнечной батарее «зеленый» светодиод (1). Опытным путём я установил, что падение напряжения 2,7 В на таком светодиоде соответствует току через светодиод, равному 50 мА (ток короткого замыкания солнечной батареи не должен превышать это значение для гарантии целости ионистора).
вольт-амперная характеристика «зеленого» светодиода
Для «красного» светодиода (2) при токе 50 мА падение напряжения составляет 1,94 В. Для «белого» светодиода (3) при токе 50 мА падение напряжения составляет 3,34 В (при 30 мА — 3,18 В).
Для предотвращения разряда ионистора я подключил его к солнечной батарее через эмиттерный p—n переход германиевого транзистора МП38 (падение напряжения на нем составляет 0,2 — 0,3 В), играющий роль блокирующего диода (англ. blocking diode).
Я расположил эту конструкцию на горизонтальной поверхности утром (в 10 35 ) довольно сумрачного февральского дня (ионисторы не слишком боятся низких температур, но при снижении температуры до — 30° C внутреннее сопротивление (ESR) ионистора возрастает в 2. 3 раза.). При этом ионистор был разряжен до напряжения 0,088 В. Через семь часов (к 17 35 ) напряжение на ионисторе достигло 1,45 В. Для изучения саморазряда я оставил ионистор подключенным к схеме на ночь в слабоосвещенном помещении. Через час напряжение на ионисторе упало до 1,23 В, через два часа — до 1,11 В.
Сначала я сделал на основе этой батареи вот такое герметичное зарядное устройство для аккумуляторов:
Затем я использовал эту солнечную батарею для питания акустического отпугивателя воробьев.
Продолжение следует
Источник
Самые необычные альтернативные источники электроэнергии
Энергия из морских волн
В апреле 2021 года британская компания Mocean Energy представила Blue X — прототип установки, которая будет преобразовывать кинетическую энергию морских волн в электричество.
Принцип работы такой: установку помещают на поверхность воды, она качается на волнах и приводит в движение шарнир посередине. Тот в свою очередь запускает генератор, который вырабатывает электроэнергию и по кабелям перенаправляет ее на сушу.
Как это применять: по оценкам Mocean Energy, если использовать хотя бы 1% всей доступной энергии волн в мире, можно обеспечить электричеством 50 млн зданий. Для сравнения: в России насчитывается около 14 млн жилых домов.
Энергия из ДНК
Оказалось, что органические молекулы тоже преобразуют солнечную энергию в электричество. В 2021 году немецкие ученые сумели синтезировать супрамолекулярную — то есть более сложную, чем обычная молекула — систему на основе ДНК.
Основа системы — фуллерен, «футбольный мяч» из 60 атомов углерода. К нему крепится краситель, который поглощает солнечный свет и отдает получившуюся энергию фуллерену. Но возникает проблема: если не упорядочить такие супрамолекулы, ток между ними будет протекать с трудом, а со временем и вовсе затухнет.
Ученые предложили такое решение: закрепили супрамолекулы на основе фуллеренов и красителя на спирали ДНК. Так движения электронов становятся упорядоченными, а электрический ток не затухает.
Как это применять: исследователи не обещают, что в скором времени на всех крышах появятся солнечные батареи из ДНК, но развивать это направление планируют. По их прогнозам, технология будет дешевле, прочнее и долговечнее, чем солнечные батареи на основе кремния.
Респираторы с солнечными батареями
Берлинский изобретатель Хайнц Кнупске превратил респиратор в устройство, генерирующее электроэнергию. По сути, это привычная для нас маска, на поверхности которой закреплена маленькая солнечная батарея.
Как это применять: батарея вырабатывает энергию, которой хватает для подзарядки телефона или часов. В начале 2021 года в Китае уже наладили серийное производство «солнечных» масок и отправили первую партию в Европу.
Солнечные паруса
В 2019 году Планетарное общество развернуло парус LightSail 2 на одной из ракет от SpaceX, и он успешно прошел испытания.
Солнечный парус — почти то же самое, что и обычный парус на кораблях. Только в движение его приводит не ветер, а солнечная энергия — поток заряженных частиц, которые выделяет Солнце. Если поймать этот поток энергии, можно долгое время путешествовать в космосе по заданному маршруту, а топливо для этого не понадобится.
Как это применять: используя наработки Планетарного общества, в 2021 году NASA с помощью паруса планирует долететь до Луны, а затем отправиться к околоземному астероиду 1991 VG.
«Бесконечная» энергия из воздуха
В 2020 году ученые из Массачусетского университета создали Air-gen — генератор, который создает электричество с помощью натурального белка и влаги из воздуха.
С помощью протеобактерий Geobacter ученые выращивают белок, который может проводить ток. Из него делают пленку толщиной менее 10 микрон — в несколько раз тоньше, чем человеческий волос — и помещают между двумя электродами. Белок забирает влагу из воздуха и за счет тонких пор создает ток между электродами.
Лучшие результаты Air-gen показывает при влажности в 45%, но справляется и в засушливых регионах вроде Сахары. Генератор не зависит от погодных условий и работает даже в помещении.
Как это применять: пока мощности Air-gen хватает только для питания мелкой электроники. В скором времени ученые разработают версию для мобильных телефонов и смарт-часов, чтобы те никогда не разряжались. А если у исследователей получится совместить Air-gen с краской для стен, в домах появится бесконечный источник электроэнергии.
Электричество из дерева
Если сжать древесину, а потом вернуть в исходное состояние, она вырабатывает электрическое напряжение — правда, очень низкое. Ученые из Швейцарии провели несколько экспериментов и в 2021 году сумели превратить древесину в мини-генератор.
Исследователи изменили химический состав древесины. Они поместили ее в смесь перекиси водорода и уксусной кислоты, растворили один из компонентов древесной коры — лигнин — и оставили только целлюлозу. В результате древесина превратилась в «губку», которая после сжатия самостоятельно возвращается в исходную форму. По словам ученых, такая губка генерирует электрическое напряжение в 85 раз выше, чем обычное дерево.
Как это применять: пока исследователи проводят испытания получившегося материала. Они уже выяснили, что энергии 30 деревянных брусков длиной 1,5 см хватит для питания ЖК-дисплея.
Жидкое топливо из солнечной энергии
Сейчас электричество получают с помощью сжигания органического топлива, например угля и природного газа. У этого способа есть две проблемы: органическое топливо вредит экологии и когда-нибудь закончится. Это заставляет ученых искать замену органике.
С 2001 года китайские ученые пытались преобразовать солнечную энергию в жидкое топливо. Спустя 20 лет у них это получилось.
Исследователям удалось получить жидкий продукт с минимумом примесей — содержание метанола в нем достигает 99,5%. Для этого потребовалось три шага:
- превратить свет, полученный с помощью солнечных батарей, в энергию;
- с помощью этого электричества разложить воду на водород и кислород;
- соединить водород и оксид углерода и получить метанол.
Как это применять: в отличие от нефти и угля, это топливо сгорает чисто. Если у Китая получится сделать производство жидкого метанола массовым, углекислого газа в атмосфере станет намного меньше — на долю Китая приходится около 29% мировых выбросов.
Источник
Сколько времени нужно двум солнечным панелям, чтобы зарядить аккумулятор на 100Ah. Провел эксперимент
Когда я впервые задумался о том, как обеспечить максимальную энергонезависимость для своего дома на колесах, было много сомнений и мыслей на этот счет.
Многие рекомендовали остановить выбор на покупке небольшого дизель-генератора. Время от времени его можно было бы запускать и заряжать таким образом внутренние аккумуляторы, питающие весь караван.
Однако у такого решения есть серьёзные недостатки.
Помимо высокой стоимости подобного устройства, оно еще и работает довольно шумно.
Если ты остановился в безлюдном уголке дикой природы это небольшая проблема. Однако, если вокруг есть другие отдыхающие, они вряд ли с восторгом отнесутся к такому соседству.
Тогда я решил поставить на крышу автодома солнечные панели. Прикинул, какое максимальное энергопотребление у всех источников в моем кемпере, и ограничился двумя панелями мощностью по 100Вт.
Суммарно, в ясный, солнечный день они способны выдавать силу тока в пределах 10 ампер, что является довольно большой цифрой.
По всем моим расчётам, этого должно было быть более, чем достаточно, чтобы без проблем заряжать стоамперный аккумулятор.
Но теория это одно, а практика совсем другое. Расставить все точки над и мне помог незапланированный эксперимент.
Однажды приехав в гараж, я забыл выключить свет в прицепе. Вернувшись обратно через четыре дня, с удивлением обнаружил, что аккумулятору хватило заряда на столь долгий срок.
Но вольтметр показывал, что в батарее осталось 10,2 вольта, а это значит, что он был практически пуст.
При падении напряжения до 10 вольт контроллер отключает всю систему и требуется подзарядка аккумулятора.
Однако я решил не использовать сетевое зарядное устройство. Это была отличная возможность выяснить, сколько времени потребуется солнечным панелям, чтобы полностью зарядит аккумулятор до 14 вольт.
Эксперимент стартовал в 8 часов утра. Погода выдалась ясной, солнышко светило ярко. Идеальные условия для того, чтобы получить ответ на давно мучавший меня вопрос.
Процесс пошел и я внимательно стал наблюдать за происходящим. Сперва показатели солнечного контроллера фиксировали цифру в пределах 10 ампер.
Это максимальный показатель силы тока, который могли выдавать две панели.
Источник