Эффективность использования солнечных панелей

КПД солнечных батарей — обзор самых эффективных модулей

Обновлено: 7 января 2021

КПД у разных типов солнечных панелей

Существует несколько разновидностей солнечных модулей, которые изготавливаются по собственным технологиям и обладают определенными параметрами. КПД солнечных панелей определяет их способность преобразовать солнечную энергию в электрический ток. Расчет производится путем деления мощности энергии, вырабатываемой панелью, на мощность потока света, падающего на рабочую поверхность.

Показатели панелей изначально определялись при стандартных лабораторных условиях (STS):

  • уровень инсоляции — 1000 вт/ м2
  • температура — 25°

Большинство современных производителей производят тестирование каждой собранной батареи и прилагают результаты к документации при продаже. Это дает более полную и корректную информацию о каждой панели, поскольку в процессе изготовления возможны некоторые отклонения от технологических нормативов. Поэтому сравнение любых двух (или более) панелей всегда выявляет небольшое расхождение демонстрируемых параметров.

Практически любые отклонения в первую очередь отражаются на эффективности, т. е. на КПД солнечной батареи. Из-за этого все разновидности не имеют четко определенного значения. Обычно указывают довольно широкий диапазон, который может давать заметную разницу параметров солнечных модулей, изготовленных по одинаковой технологии.

Читайте также:  Маленькие солнечные батареи для зарядки

Все виды фотоэлементов обладают определенными свойствами, определяющими эффективность солнечных батарей. Каждая разновидность имеет свои пределы возможностей, обусловленные строением и составом полупроводников.

Новый мировой рекорд: эффективность солнечных батарей повысили до 29,15%

Научно-исследовательская группа Helmholtz-Zentrum Berlin (HZB) описала в журнале Science разработку тандемного солнечного элемента из перовскита и кремния. Его КПД составил 29,15%. На текущий момент — это новый мировой рекорд. Предыдущие показатели КПД были в районе 28%. Исследователи планируют довести эффективность тандемного солнечного элемента до 30% и даже превысить этот показатель.

Для солнечных элементов базовым материалом является кремний, а разработки с использованием перовскита (титаната кальция) ведутся параллельно. Ученые думают, что возможности перовскита еще не раскрыты и используя оба материала, они получают прирост эффективности.

Солнечные элементы, состоящие из двух полупроводников с различной шириной запрещенной зоны, способны демонстрировать высокую эффективность по сравнению с отдельными элементами, так как тандемные элементы полнее используют солнечный спектр. В частности, обычные кремниевые солнечные элементы главным образом эффективно преобразуют в электрическую энергию инфракрасную часть солнечного спектра, в то время как соединения перовскита могут эффективно преобразовывать видимую часть спектра, повышая КРД тандема.
Использование перовскита и кремния не увеличивает стоимость солнечных панелей.

Виды солнечных фотоэлементов и их КПД

Существуют разные виды солнечных батарей:

  • кремниевые
  • теллур-кадмиевые
  • из арсенида галлия
  • из селенида индия
  • полимерные
  • органические
  • комбинированные, многослойные

Самые эффективные солнечные панели из тех, что находятся в серийном производстве — кремниевые.

Их выпускают в двух видах:

  • монокристаллические. Изготавливаются из тонких пластинок, срезанных с цельного (монолитного) кристалла кремния. Считается, что это — лучшие солнечные панели, демонстрирующие КПД от 17 до 22 %
  • поликристаллические. Заготовкой для этих элементов является брикет кремния, который был расплавлен и разлит по формам. Такие панели обладают немного сниженными показателями по всем позициям, чем монокристаллические. Их КПД находится в диапазоне 12-17 %

Есть еще одни современные солнечные батареи с высоким КПД — это панели на основе селенид-индия. Они способны выдать КПД 15-20 %. Несколько меньшими качествами обладают элементы из теллурида кадмия — не более 10-12 %.

Остальные виды значительно уступают лидерам — аморфные и полимерные элементы демонстрируют КПД не более 5-6 %. Необходимо учитывать, что приведенные показатели — усредненные. У разных производителей есть образцы, превышающие обычные нормы эффективности. Это не меняет общей картины, но демонстрирует необходимость совершенствования технологий, разработки новых методов производства фотоэлементов.

От чего зависит эффективность?

КПД солнечных фотоэлектрических установок составляет лишь малую часть от теоретически возможных показателей. Расчетный КПД доходит до 80-87 %, но изъяны технологии, недостаточная чистота материалов и неточность сборки элементов существенно снижают эти значения. Основная проблема кремниевых элементов заключается в способности поглощать лучи только инфракрасного спектра, а энергия ультрафиолетовых участков остается неиспользованной.

Проблема состоит в дороговизне процессов очистки, выращивания кристаллов и прочих тонких процедур, без которых ожидаемого эффекта не удастся добиться. Все солнечные панели с высоким КПД отличаются высокой стоимостью, что делает их недоступными для массового пользователя.

Необходимо учитывать также погодные и климатические условия. Самая производительная система не сможет демонстрировать высокие результаты, если источник энергии скрыт за тучами, или находится низко над горизонтом. Этот фактор не подлежит регулированию, единственным способом борьбы с ним может стать повышенная эффективность солнечных панелей.

Некоторые разновидности фотоэлементов способны вполне стабильно вырабатывать энергию в пасмурную погоду, например, тонкопленочные виды. Однако, их производительность невысока и не дает нужного количества энергии. Чем выше КПД батарей, тем сильнее падает количество вырабатываемой энергии при появлении облачности.

Ежегодно появляются заявления от различных компаний или групп ученых о разработке высокоэффективных образцов солнечных панелей, стабильно работающих в сложных условиях. Однако, в продаже до сих пор есть только привычные кремниевые или пленочные разновидности, а новинок не видно. Причиной этого является слишком высокая себестоимость производства и нестабильность результатов технологий, вынуждающие изготовителей пока отказываться от недоработанных новшеств.

Срок службы и окупаемость

Большинство солнечных панелей способны работать по 25 лет и более. Однако, первоначальные характеристики со временем ухудшаются, происходит падение производительности и, как следствие, уменьшение КПД. Факторы, влияющие не длительность эксплуатации фотоэлементов:

  • тип конструкции. Чем выше изначальная производительность, тем более высокие результаты панель будет показывать после многолетней службы
  • условия эксплуатации. В регионах с сильными среднесуточными и среднегодовыми перепадами температур ресурс панелей быстро уменьшается. Происходит физический износ полупроводников, нарушается прочность соединения слоев, образующих p-n переход. Все эти факторы отрицательно влияют на КПД солнечных модулей

Окупаемость панелей в первую очередь зависит от инсоляции — количества солнечной энергии, доступной фотоэлементам. Здесь необходимо учитывать следующие факторы:

  • продолжительность светового дня
  • положение солнца над горизонтом
  • погодные условия в регионе

Практика показывает, что средний процент деградации солнечных батарей составляет 0,6 % в год. Однако, к естественным процессам прибавляются внешние воздействия — температурные, механические и т.п. Поэтому производители обычно гарантируют, что в течение 10 лет эксплуатации производительность не упадет больше, чем на 10 %.

Вопрос окупаемости солнечных панелей всерьез никем не рассматривается. Существуют приблизительные расчеты, показывающие количество выработанной энергии и ее среднюю стоимость в течение 10, 25 лет. Эти данные не способны показать реальной картины, поскольку все комплексы работают в собственных условиях, подвергаются тем или иным воздействиям и не могут гарантировать заданной производительности.

Специалисты утверждают, что для некоторых регионов окупаемость солнечных батарей никогда не наступает, в других местностях она составляет около 10 или 15 лет.

Подробные исследования не производятся, или ведутся только для данного района. Если необходимо узнать технико-экономические показатели СЭС, приходится каждый раз производить индивидуальный расчет для данных условий, моделей солнечных модулей и прочих факторов воздействия.

Самые эффективные солнечные батареи

Обычный пользователь не старается глубоко вникнуть в теорию, поэтому он чаще всего задает вопрос — хочу купить солнечные панели, какие лучше? Вопрос простой, но ответить на него однозначно крайне сложно. Все зависит от возможностей и потребностей покупателя.

Споры о том, какие солнечные батареи самые эффективные ведутся с самого начала их использования. Несмотря на приоритет кристаллических кремниевых конструкций, нередко впереди оказываются другие виды панелей. Есть рекордсмены в этой области, например, фирма Sharp объявила о создании панелей с КПД 44 %. Эта же фирма создала модули с эффективностью 37,9 %. Есть образцы от других разработчиков с КПД около 32 %. Все эти модели весьма дороги и в массовое производство пока не поступают. Нерентабельность — основная проблема развития солнечных модулей.

Исследования и разработки для повышения КПД

Наиболее перспективным направлением исследований считается создание многослойных панелей. Основной упор делается на возможность получения энергии от инфракрасных и ультрафиолетовых лучей, которые во многом более активны, чем видимые части спектра. Работы ведутся и в области очистки кремниевых структур, создания наиболее однородных и чистых кристаллов.

Еще одним направлением является создание максимально плотных и ровных соединений полупроводников. Электрический ток возникает на границе двух материалов, и, если поверхность обоих изобилует впадинами и прочими изъянами, эти участки исключаются из общей рабочей зоны. Проблема технически сложная, поскольку речь идет о микронной точности шлифовки. Для промышленного производства эти методики пока слишком сложны, а цены на панели будут недоступны рядовым покупателям. Процесс исследований происходит непрерывно, поэтому ожидать положительных сдвигов можно в любой момент.

Видео-инструкция по сборке своими руками

Источник

Солнечные батареи: перспективы использования, эффективность

Актуальность данной темы

В настоящее время во всем мире, в том числе и в нашей стране, остро встает вопрос о разработке и внедрении новых источников энергии. Всем известно, что наиболее значимыми из них на сегодняшний день являются нефть, природный газ, уголь, электричество. Запасы нефти и газа не безграничны, в силу всего этого необходимо искать альтернативные источники энергии. Одним из них является использование так называемых солнечных батарей. О солнечной энергетике знают уже давно, это предмет споров и дискуссий среди специалистов. Некоторые считают, что это большая перспектива на будущее, другие уверены в противоположном.

Схема подключения солнечных панелей.

Сейчас очень большое количество крупных кампаний вкладывает миллионы в развитие этой отрасли, в том числе в строительство солнечных электростанций. С одной стороны, солнечные батареи не требуют затрат при их эксплуатации, но стоимость данного оборудования высока. Часть специалистов утверждает, что прибыль от данного проекта не сможет покрыть расходы, связанные со строительством. В противовес этому данные устройства могут работать десятками и сотнями лет, поэтому при длительной эксплуатации прибыль будет налицо. Следует рассмотреть более подробно, какова эффективность солнечных батарей, факторы, ее определяющие. Но сперва нужно ознакомиться с принципом их работы, основными преимуществами.

Принцип работы солнечных батарей

Схема элементов солнечной батареи.

Всем известно, что электричество — это основной источник энергии. Но его можно получить и более простым путем. Солнце — это естественный источник энергии, который может широко использоваться в современном мире. Для солнечных батарей главным механизмом работы является поглощение солнечной энергии и преобразование ее в электрическую, а впоследствии в тепловую. Наиболее широкое применение эти устройства нашли в системе отопления частных домов.

Такие батареи представляют собой фотоэлектрические генераторы электрической энергии. У солнечных батарей есть полупроводниковый элемент, на который воздействуют солнечные лучи. Вследствие всего этого образуется постоянный электрический ток, который в дальнейшем используется для обогрева.

В цепях солнечных батарей генерируется напряжение, которое и имеет ценность. В состав аппарата входит аккумулятор, который способен накапливать энергию. Несомненно, для того чтобы это было возможно, потребуется солнечная погода. После накопления энергии, аккумулятор может снабжать потребителя теплом некоторое время в пасмурную погоду.

Эффективность солнечного оборудования

Стоит знать о производительности солнечных батарей. Опираясь на научные данные, можно утверждать, что энергия составляет примерно 1367 Вт на 1 м². В области экватора некоторое ее количество задерживается атмосферой, поэтому энергия, которая доходит до земли равна 1020 Вт.

В России же можно получить только 160 Вт/м² с учетом того, что коэффициент полезного действия солнечных батарей равен 16%.

Схема работы солнечной батареи.

К примеру, если установить солнечные батареи на площади в 1 км², то годовое количество полученной электроэнергии составит примерно 187 ГВт/ч (1173 * 0,16).

При этом большое значение имеет угол установки их относительно падающего света, в данном случае оптимальное его значение 40 °. Стоимость 1 кВт электроэнергии в настоящее время равна 3 рублям, стоимость электроустановки будет составлять 561 млн рублей. Коэффициент полезного действия данного оборудования непостоянен и зависит от нескольких факторов. Главный из них — интенсивность и продолжительность инсоляции, которая, в свою очередь, определяется погодными условиями, длительностью дня и ночи, то есть широтой местности. Огромное значение имеет и тип установочных солнечных батарей.

Эффективность для отопления частного дома

Большой интерес представляет собой использование подобного оборудования для отопления дома. Электричество — это отличный источник тепла. Многие дома имеют именно такую систему отопления. Нужно учитывать тот факт, что отопление частного дома с помощью такого источника целесообразно организовывать только для регионов с максимумом солнечной энергии. Для северных территорий, где бывают полярные ночи, потребуется другой подход. В этом случае рекомендуется совмещать использование солнечной энергии с другими типами отопления, например, газовым или отоплением на твердом топливе (печным).

Все дело в том, что эффективность таких батарей в пасмурную погоду низкая, что может вызвать недостаток тепла. Поэтому отопление с помощью энергии солнца, преобразованной в электрическую, не рекомендуется применять обособленно от других. Оптимально использовать их только для экономии денег, когда это возможно. Таким образом, можно сделать вывод, что использование солнечных батарей не всегда может в полной мере обеспечить оптимальные микроклиматические условия в помещении, обогреть дом, в силу этого данный вид энергии рекомендуется применять совместно с другими видами отопления.

Экономическая эффективность

Схема солнечного коллектора.

Важное положение при использовании этого источника — экономическая выгода. Она напрямую зависит от мощности батареи и площади фотоэлектрических элементов, которые воспринимают лучи. Если взять для примера такой город, как Москва, то можно получить следующие интересные данные. Если мощность устройства составляет 800 Вт, то она позволяет ограниченно пользоваться бытовыми приборами, но не сможет обеспечить бесперебойную подачу электричества в течение суток для обогрева помещений.

При мощности устройства в 10 раз больше, то есть 8 кВт, оно позволит обогревать небольшие по площади помещения дома в осеннее и зимнее время. Весной же возможен полноценный обогрев всех помещений.

Устройство с мощностью 13,5 кВт практически полностью заменяет электричество, что может обеспечить постоянный обогрев дома во все месяцы года, за исключением ноября, декабря и января. В этом случае можно основные приборы оставить работать от солнечных аппаратов, а отопление подключить к центральной системе. Так можно прилично сэкономить. Самыми мощными генераторами являются те, которые имеют мощность 31,5 кВт. Они позволят полностью отказаться от основных видов энергообеспечения и использовать только энергию солнца на протяжении всего года длительное время. Но стоят такие аппараты дорого, что ограничивает их применение.

Недостатки использования энергии солнца

Схема расположения солнечных панелей.

Несмотря на то, что электричество, полученное с помощью только энергии солнца, не требует при эксплуатации системы никаких капиталовложений, в данном вопросе много проблем. Во-первых, объем полученного электричества во многом зависит от следующих факторов: погоды, широты местности, мощности батарей.

Во-вторых, такие источники тепла являются в большей степени дополнительным средством, к примеру, для обогрева, что ограничивает их применение. В-третьих, установка подобного оборудования стоит больших денег. В частности, это касается крупных электростанций. Стоимость самих аккумуляторов на порядок превышает таковую для батарей.

Но самое важное — это удешевление способов генерации полученного от солнца тепла и сохранение его как можно более длительное время. Вечером потребление электричества возрастает, а батареи работают в основном в дневное время. Учеными вычислено, что стоимость 1 Вт от батареи равно 0,5 $. За день (8 часов работы) она способна образовать 8 Вт/ч, которую потребуется сохранить на вечернее время. Самое дешевое солнечное электричество сейчас получают с помощью поликристаллических батарей. Большое значение имеет и то, что стоимость солнечной энергии не должна превышать цену альтернативного топлива, например, газа. Если взять для примера одного из мировых лидеров в данном вопросе — Германию — цена на газ в ней равна 450 $, то стоимость 1 кВт солнечной энергии не должна быть выше 0,1 $. В противном случае применение последней будет экономически не целесообразным.

Преимущества источника энергии

Электричество, полученное таким образом, является альтернативой тому, которым мы привыкли пользоваться сегодня. Данный вид энергообеспечения оптимален для тех территорий и объектов, где нет других источников, например, на отдаленных станциях сотовой связи.

Подобное оборудование может быть незаменимым в южных регионах нашей страны, где наблюдается пик солнечной активности. При использовании крупных станций важно помнить, что они могут прослужить десятки и сотни лет.

Заключение, выводы, рекомендации

На основании всего вышесказанного можно сделать заключение о том, что в современном мире идут поиски альтернативных источников энергии. Перспективным направлением является солнечная энергетика, которая основана на использовании солнечных батарей. Стандартная солнечная установка состоит из следующих основных частей: обыкновенного преобразователя, преобразователя постоянного тока в переменный, механизма отбора мощности, аккумулятора и аппарата, регулирующего уровень зарядки и разрядки.

Эффективность подобного оборудования зависит от нескольких факторов. Самый важный из них — активность солнечной энергии и мощность батареи. Наиболее оптимальными являются аппараты с мощностью от 13,5 кВт, что может обеспечить практически бесперебойную работу всего оборудования. Для северных регионов нашей страны использование батарей не является перспективным. Рекомендуется применение их в качестве дополнительного источника электричества в целях экономии средств. Целесообразно совмещать ее с центральным отоплением (на природном газе или твердом топливе). При возведении солнечных станций нужно учесть большие затраты на оборудование. Окупаемость может составить десятки лет.

Источник

Оцените статью