Диод шоттки для солнечных панелей для чего нужен

Принцип работы диода Шоттки и сферы его применения

Диод Шоттки, принцип работы которого мы опишем сегодня, является очень удачным изобретением немецкого ученого Вальтера Шоттки. В его честь устройство и было названо, а встретить его можно при изучении самых разных электрических схем. Для тех, кто еще только начинает знакомиться с электроникой, будет полезным узнать о том, зачем его используют и где он чаще всего применяется.

Что это такое

Это полупроводниковый диод с минимальным падением уровня напряжения во время прямого включения. Он имеет две главные составляющие: собственно, полупроводник и металл.
Как известно, допустимый уровень обратного напряжения в любых промышленных электронный устройствах составляет 250 В. Такое U находит практическое применение в любой низковольтной цепи, препятствуя обратному течению тока.

Структура самого устройства несложна и выглядит следующим образом:

  • полупроводник;
  • стеклянная пассивация;
  • металл;
  • защитное кольцо.

При прохождении электрического тока по цепи положительные и отрицательные заряды скапливаются по всему периметру устройства, включая защитное кольцо. Скопление частиц происходит в различных элементах диода. Это обеспечивает возникновение электрического поля с последующим выделением определенного количества тепла.

Отличие от других полупроводников

Главное его отличие от других полупроводников состоит в том, что преградой служит металлический элемент с односторонней проводимостью.

Такие элементы изготавливают из целого ряда ценных металлов:

  • арсенида галлия;
  • кремния;
  • золота;
  • вольфрама;
  • карбида кремния;
  • палладия;
  • платины.
Читайте также:  Солнечные панели солнечные водонагреватели

От того, какой металл выбирается в качестве материала, зависят характеристики нужного показателя напряжения и качество работы электронного устройства в целом. Чаще всего применяют кремний — по причине его надежности, прочности и способности работать в условиях большой мощности. Также используется и арсенид галлия, соединенный с мышьяком, либо германий.

Плюсы и минусы

При работе с устройствами, включающими в себя диод Шоттки, следует учитывать их положительные и отрицательные стороны. Если подключить его в качестве элемента электрической цепи, он будет прекрасно удерживать ток, не допуская его больших потерь.

К тому же, металлический барьер обладает минимальной емкостью. Это значительно увеличивает износостойкость и срок службы самого диода. Падение напряжения при его использовании минимально, а действие происходит очень быстро — стоит только провести подключение.

Однако большой процент обратного тока является очевидным недостатком. Поскольку многие электроприборы обладают высокой чувствительностью, нередки случаи, когда небольшое превышение показателя, всего лишь на пару А, способно надолго вывести прибор из строя. Также, при небрежной проверке напряжения полупроводника, может произойти утечка самого диода.

Сфера применения

Диод Шоттки может включать в себя любой аккумулятор.

Он входит в устройство солнечной батареи. Солнечные панели, которые уже давно успешно работают в условиях космического пространства, собираются именно на основании барьерных переходов Шоттки. Такие гелиосистемы устанавливаются на космических аппаратах (спутниках и телескопах, проводящих работу в жестких условиях безвоздушного пространства).

Устройство незаменимо при работе компьютеров, бытовой техники, радиоприемников, блоков электропитания. При правильном использовании диод Шоттки увеличивает производительность любого устройства, предотвращает потери тока. Он способен принимать на себя альфа-, бета- и гамма-излучение. Именно поэтому он незаменим в условиях космоса.

С помощью такого устройства можно осуществить параллельное соединение диодов, используя их в качестве сдвоенных выпрямителей. Таким образом можно объединить межлу собой два параллельных источника питания. Один корпус включает в себя два полупроводника, а концы положительного и отрицательного зарядов связываются друг с другом. Есть и более простые схемы, где диоды Шоттки очень малы. Это характерно для очень мелких деталей в электронике.

Диод Шоттки является незаменимым элементом во многих электронных устройствах. Главное — понимать специфику его работы и использовать его корректно.

Источник

Электрик и диод. Когда нужны диоды для солнечных батарей?

Ни для кого не секрет, что, при производстве солнечных батарей, а также при их монтаже, используют диоды. Тем не менее, у большинства пользователей нет четкого понимания о том, какую роль эти диоды выполняют и зачем они вообще нужны.
Мы постараемся пролить свет на этот сложный вопрос и сформулируем основные правила применения диодов при монтаже солнечных электростанций.

По большей части солнечные батареи состоят из некоторого количества солнечных ячеек. Простейшая эквивалентная схема солнечной ячейки выглядит следующим образом:

Рис. 1 Эквивалентная схема фотоэлектрической ячейки

Здесь Rп – последовательное сопротивление фотоэлектрической ячейки, Rш – шунтовое (параллельное) сопротивление фотоэлектрической ячейки.
Обычно в солнечной панели все элементы соединяются последовательно, что может приводить к проблеме «черного пятна». Рассмотрим схему солнечной батареи. Нагрузку обозначим как Rн.

Рис.2 Схема солнечной батареи

Если затеняется один из элементов, исчезает его ЭДС, а активное сопротивление растет по мере затенения. Нетрудно догадаться, что на затененной ячейке выделится большая часть мощности солнечной батареи, от чего ячейка может перегреться и выйти из строя, а вместе с ней и вся солнечная панель.
Для предотвращения этого нежелательного эффекта каждую фотоэлектрическую ячейку нужно шунтировать диодом.

Рис. 3 Схема фотоэлектрической панели с шунтирующими диодами.

Если солнечная ячейка освещена, шунтирующий диод заперт ЭДС самой ячейки, и ток через него не идет, солнечная батарея работает в обычном режиме. При затенении исчезает ЭДС, диод открывается и весть ток идет мимо ячейки, не повреждая её. Таким образом, фотоэлектрическая ячейка, равно как и вся солнечная батарея, не выходит из строя.

Конечно, шунтировать каждую ячейку очень сложно и дорого, поэтому обычно диоды подключают к некоторой группе ячеек. В зависимости от мощности и конструкции солнечной батареи, в монтажной коробке может быть различное количество шунтирующих диодов.

Теперь, наверняка, понятно, зачем нужны шунтирующие диоды, также совершенно ясно, что ставить их отдельно не нужно, они уже есть внутри солнечных батарей. Могут встречаться солнечные батареи и без шунтирующих диодов, однако это большая редкость.

Блокирующие диоды для солнечных панелей

Помимо шунтирующих диодов широко применяются и блокирующие. Зачем они нужны? Рассмотрим параллельное соединение двух солнечных батарей. Для наглядности изобразим их как диоды.

Рис.4 Параллельное соединение двух солнечных батарей.

При затенении одной из солнечных батарей, даже частичном, возникнет довольно неприятная картина: затененный модуль станет нагрузкой для освещенного, возникнет противоток и дополнительный нагрев. Ситуация усугубляется, если сопротивление нагрузки велико, а это запросто может быть, если аккумулятор заряжен. В предельном случае имеет место просто короткое замыкание освещенной панели через затененную.
Тем не менее, если солнечных батарей две, то все не так страшно, в цепи будет течь ток короткого замыкания одной солнечной батареи, который, как известно, не так велик, чтобы как-то повредить панель.

Рис.5 Параллельное соединение трех солнечных батарей.

Другое дело, если параллельно соединено много солнечных батарей, больше двух. Тогда, при затенении, в цепи может протекать сумма нескольких токов короткого замыкания и затененный солнечный модуль запросто может выйти из строя. В данном случае, чтобы исключить противоток, следует установить блокирующий диод для каждой параллельной цепочки, будь это одна солнечная батарея или несколько, соединенных последовательно.

Рис. 6 Применение блокирующих диодов при параллельном соединении солнечных батарей.

Итак, мы рассмотрели тот единственный случай, когда действительно нужно дополнительно устанавливать блокирующие диоды.
Подключается диод при помощи МС4 коннекторов. Прелесть в том, что подключить его в неверном направлении просто невозможно, так как МС4 + и – разные и они просто не подойдут, если направление неверное. Диоды характеризуются предельным током, от 5 до 30 А. Больше 30А вряд ли получится встретить, так как это максимальный ток для МС4 коннектора.

Намеренное затенение солнечных батарей

Затенение солнечных батарей является большой проблемой, однако иногда оно создается намеренно. Довольно популярна идея установки солнечных батарей на разные стороны света, допустим, на восток и на запад. Идея, действительна, хорошая. Пожертвовав суммарной дневной выработкой, мы улучшаем распределение этой выработки в течении дня, то есть увеличиваем утреннюю и вечернюю часть. Таким образом, аккумулятор меньше циклируется и живет дольше. Использовать в подобных системах следует два независимых трекера, то есть два солнечных контроллера, что вполне логично, солнечные массивы освещены по-разному и каждый имеет свою рабочую точку.
Пример такой электростанции мы уже разбирали в обзоре «Установка солнечных батарей на разные скаты крыши».
Тем не менее, очень часто, по большей части из экономии, оба солнечных массива подключают к одному контроллеру. Якобы второй контроллер вообще не нужен, а влияние солнечных батарей друг на друга можно исключить при помощи диодов. Применяется даже термин – «развязывающие» диоды. Действительно, блокирующие диоды в данной ситуации просто необходимы, и скорее уже как противопожарная мера. Тем не менее, в течение дня один из солнечных массивов постоянно блокирован диодом, работает только самый освещенный. По сути, солнечные батареи мешают работать друг другу и толку от такой системы совсем не много.
Итак, имея солнечные батареи в разных условиях, это могут быть просто разные солнечные панели, разная ориентация по сторонам света, или разный угол установки — используйте отдельные контроллеры заряда. Диоды вам не помогут сохранить выработку. Вообще, как мы выяснили, диоды нужно ставить лишь в одном случае, когда параллельно соединены три и более солнечных батареи или группы солнечных батарей.

Источник

Солнечные батареи своими руками ?

Данная статья – вольный перевод статьи Майкла Дэвиса о постройке недорогой Солнечной фотоэлектрической батареи своими руками.

Пару лет назад я купил удаленный участок в Аризоне. Я астроном, и мне нужно было удаленное от крупных городов место для астрономических наблюдений. Я нашел такое место. Проблема в том, что из-за удаленности на участке нет никакого электроснабжения. Ну, на самом деле для меня это не проблема. Нет электричества – нет ночной засветки неба. Тем не менее,хорошо бы иметь хоть какое-то электроснабжение, т.к. жизнь в ХХI веке сильно от него зависит.

Я построил ветрогенератор для электрообеспечения этого участка. Он работает хорошо, когда ветер дует. К сожалению, мне нужно больше энергии. И эта энергия должна быть более стабильна. А то такое ощущение, что у меня на участке ветер дует всегда, но только не тогда когда мне нужна энергия. В Аризоне более 300 солнечных дней в году, поэтому солнечная батарея сделанная своими рукам кажется очевидным дополнением к ветрогенератору. К сожалению, солнечные батареи недешевы, поэтому я решил сделать все сам. Использовал самые обычные инструменты и недорогие и распространенные материалы, чтобы сделать батарею конкурирующую с коммерческими образцами по мощности, но не оставляющим никакого шанса по цене.

Итак, что же такое солнечная батарея или солнечный фотоэлектрический модуль?
По существу, это контейнер, содержащий массив солнечных элементов. Солнечные элементы, это те штуки, которые на самом деле делают всю работу по преобразованию солнечной энергии в электричество. К сожалению, для получения мощности, достаточной для практического применения, солнечных элементов надо достаточно много. Также, солнечные элементы ОЧЕНЬ хрупкие. Поэтому их и объединяют в СБ. Батарея содержит достаточное количество элементов для получения высокой мощности и защищает элементы от повреждения. Звучит не слишком сложно. Я уверен, что смогу сделать солнечную батарею своими руками.

Я начал свой проект, как обычно, с поиска в сети информации по самодельным солнечным батареям и был шокирован как же ее мало. Тот факт, что мало кто сделал свои собственные солнечные батареи, заставлял меня думать, что это должно быть очень сложно. Задумка была отложена в долгий ящик, но я никогда не переставал думать о ней.

Спустя какое-то время, я пришел к следующим умозаключениям:

  • главное препятствие в постройке СБ это приобретение солнечных элементов за разумную цену
  • новые солнечные элементы очень дороги и их сложно найти в нормальном количестве за любые деньги
  • дефектные и поврежденные солнечные элементы есть в наличии на eBay и других местах гораздо дешевле
  • солнечные элементы «второго сорта» возможно, могут быть использованы для изготовления солнечной батареи

Когда до меня дошло, что я могу использовать дефектные элементы,чтобы сделать свою СБ, я взялся за работу. Начал с покупки элементов.

Купил несколько блоков монокристаллических солнечных элементов размером 3х6 дюйма. Чтобы сделать СБ, необходимо соединить последовательно 36 таких элементов. Каждый элемент генерирует порядка 0,5В. 36 элементов,соединенных последовательно дадут нам около 18В, которые будут достаточны для зарядки батарей на 12В. (Да, такое высокое напряжение действительно необходимо для эффективной зарядки 12В аккумуляторов). Солнечные элементы этого типа тонкие как бумага, хрупкие и ломкие как стекло. Их очень легко повредить. Продавец этих элементов окунул наборы из 18 шт. в воск для стабилизации и доставки без повреждений. Воск –это головная боль при его удалении. Если у вас есть возможность, ищите элементы, не покрытые воском. Но помните, что они могут получить больше повреждений при транспортировке. Заметьте, что мои элементы уже имеют припаянные проводники. Ищите элементы с уже припаянными проводниками. Даже с такими элементами вам нужно быть готовым много поработать паяльником. Если же вы купите элементы без проводников, приготовьтесь работать паяльником раза в 2-3 больше. Короче, лучше переплатить за уже припаянные провода.

Также я купил пару наборов элементов без заливки воском у другого продавца.Эти элементы пришли упакованные в пластиковую коробку. Они болтались в коробке и немного обкололись по бокам и углам. Незначительные сколы не имеют особого значения. Они не смогут снизить мощность элемента настолько, чтобы об этом надо было беспокоиться. Купленных мной элементов должно хватить на сборку двух СБ. Я знаю, что возможно сломаю парочку при сборке, поэтому купил чуть больше.

Солнечные элементы продаются самого широкого спектра форм и размеров. Вы можете использовать более крупные или мелкие, чем мои 3х6 дюймов. Просто помните:

  • Элементы одного типа производят одинаковое напряжение независимо от их размера. Поэтому для получения заданного напряжения всегда потребуется одинаковое количество элементов.
  • Большие по размеру элементы могут генерировать бОльший ток, а меньшие по размеру, соответственно – меньший ток.
  • Общая мощность вашей батареи определяется как ее напряжение умноженное на генерируемый ток.

Использование больших по размеру элементов позволит получить большую мощность при том же напряжении, но батарея получится крупнее и тяжелее.Использование меньших элементов позволит уменьшить и облегчить батарею,но не сможет обеспечить такую же мощность. Также стоит отметить, что использование в одной батарее элементов разных размеров – плохая идея. Причина в том, что максимальный ток, генерируемый вашей батареей, будет ограничен током самого маленького элемента, а более крупные элементы не будут работать в полную силу.

Солнечные элементы, на которых я остановил выбор, имеют размер 3х6дюйма и способны генерировать ток примерно 3 ампера. Я планирую соединить последовательно 36 таких элементов, чтобы получить напряжение чуть больше 18 вольт. В результате должна получиться батарея, способная выдавать мощность порядка 60 ватт на ярком солнце. Звучит не сильно впечатляюще, но все же это лучше чем ничего. При чем, это 60Вт каждый день, когда светит солнце. Эта энергия будет идти на зарядку аккумулятора, который будет использоваться для питания светильников и небольшой аппаратуры всего несколько часов после наступления темноты. Просто когда я иду спать, мои энергетические потребности сводятся к нулю. Короче, 60 Вт это вполне достаточно, особенно учитывая, что у меня есть ветрогенератор, который тоже производит энергию, когда дует ветер.

После того как вы купите свои солнечные элементы спрячьте их в безопасное место, где они не разобьются, не попадут детям для игр и не будут съедены вашей собакой до тех пор, пока вы не будете готовы установить их в вашу СБ. Элементы очень хрупкие. Грубое обращение превратит ваши дорогие солнечные элементы в маленькие синенькие блестящие и ни для чего непригодные осколочки.

Итак, солнечная батарея это просто неглубокий ящик. Я начал с постройки такого ящика. Я сделал его неглубоким, чтобы борта не затеняли солнечные элементы, когда солнце светит под углом. Сделан он из фанеры толщиной 3/8 дюйма с бортиками из реек толщиной 3/4 дюйма. Бортики приклеены и привинчены на место. Батарея будет содержать 36 элементов размером 3х6 дюймов. Я решил разделить их на две группы по 18 шт.просто для того, чтобы их было проще паять в будущем. Отсюда и центральная планка посередине ящика.

Вот небольшой набросок, показывающий размеры моей СБ. Все размеры в дюймах(простите меня, поклонники метрической системы). Бортики толщиной 3/4дюйма идут вокруг всего листа фанеры. Такой же бортик идет по центру и делит батарею на две части. В общем, я решил сделать так. Но в принципе, размеры и общий дизайн не критичны. Можете свободно все варьировать в своем эскизе. Размеры же тут я приводу для тех людей,которые постоянно ноют, чтобы я включил их в свои эскизы. Я всегда поощряю народ экспериментировать и изобретать что-то свое, нежели слепо следовать инструкциям, написанным мной (или кем-то еще). Возможно, у вас получится лучше.

Вид одной из половин моей будущей батареи. В этой половине будет размещена первая группа из 18 элементов. Обратите внимание на небольшие отверстия в бортиках. Это будет нижняя часть батареи (на фото верх находится внизу). Это вентиляционные отверстия, предназначенные для выравнивания давления воздуха внутри и снаружи СБ и служащие для удаления влаги. Эти отверстия должны быть только внизу батареи, иначе дождь и роса попадут внутрь. Такие же вентиляционные отверстия должны быть сделаны в центральной разделительной планке.

Далее я вырезал два подходящих по размеру куска ДВП. Они будут служить подложками, на которых будут собираться солнечные элементы. Они должны свободно помещаться между бортиками. Не обязательно использовать именно перфорированные листы ДВП, просто у меня оказались такие под рукой.Пойдет любой тонкий, жесткий и не проводящий ток материал.

Чтобы защитить батарею от погодных неприятностей, лицевую сторону закрываем оргстеклом. Эти два куска оргстекла были вырезаны, чтобы закрывать всю батарею полностью. У меня не было одного достаточно большого куска.Стекло тоже можно использовать, но стекло бьется. Град, камни и летящий мусор могут разбить стекло, а от оргстекла просто отскочат. Как видите,начинает вырисовываться картинка, как солнечная батарея будет выглядеть в итоге.

Упс! На фото два листа оргстекла соединенные на центральной перегородке. Я сверлил отверстия вокруг кромки, чтобы посадить оргстекло на шурупы.Будьте осторожны, сверля отверстия возле кромки оргстекла. Будете сильно давить – сломается, что у меня и произошло. В итоге, я просто приклеил отломавшийся кусок и просверлил недалеко новое отверстие.

После этого, я окрасил все деревянные части солнечной батареи несколькими слоями краски, чтобы защитить их от влаги и воздействия окружающей среды. Ящик я покрасил внутри и снаружи. При выборе типа краски и ее цвета был использован научный подход. Я взболтал всю краску из остатков, имеющихся у меня в гараже, и выбрал ту банку, в которой краски хватит, чтобы сделать всю работу.

Подложки тоже были окрашены в несколько слоев с обеих сторон. Убедитесь, что вы хорошо все прокрасили, иначе дерево может покоробиться от влаги. А это может повредить солнечные элементы, которые будут приклеены к подложкам. Теперь, когда у меня есть основа для СБ, самое время подготовить солнечные элементы.

Как я говорил раньше, удаление воска с солнечных элементов – это настоящая головная боль. После нескольких проб и ошибок я все-таки нашел неплохой способ. Но я по-прежнему рекомендую покупать элементы у того, кто не заливает их воском.

Первый шаг, это «купание» в горячей воде, чтобы растопить воск и отделить элементы друг от друга. Не дайте воде закипеть, иначе пузырьки пара будут сильно бить элементы один о другой. Кипящая вода также может быть слишком горячей, в элементах могут быть нарушены электрические контакты. Я также рекомендую погружать элементы в холодную воду, а потом медленно их нагревать, чтобы исключить неравномерный нагрев.

Пластиковые щипцы и лопатка помогут отделить элементы, когда воск растает. Постарайтесь сильно не тянуть за металлические проводники – могут порваться. Я обнаружил это, когда пробовал разделить свои элементы. Хорошо, что я купил их с запасом.

Тут показана финальная версия «установки» которую я использовал. Моя подруга спросила, что это я готовлю. Вообразите ее удивление, когда я ответил: «Солнечные элементы». Первая «горячая ванна» для растапливания воска находится на заднем плане справа. На переднем плане слева – горячая мыльная вода, а справа – чистая горячая вода. Температуры во всех кастрюлях ниже температуры кипения воды. Сначала в дальней кастрюле растапливаем воск, переносим элементы по одному в мыльную воду, чтобы удалить остатки воска, после чего промываем в чистой воде. Выкладываем элементы для просушки на полотенце. Вы можете менять мыльную воду и воду для промывки почаще. Только не сливайте использованную воду в канализацию, т.к. воск затвердеет и засорит сток.Этот процесс удалил практически весь воск с солнечных элементов. Только на некоторых остались тонкие пленки, но это не помешает пайке и работе элементов. Промывка растворителем, возможно, удалит остатки воска, но это может быть опасно и зловонно.

Несколько разделенных и очищенных солнечных элементов сушатся на полотенце. После разделения и удаления защитного воска из-за своей хрупкости они стали удивительно сложными в обращении и хранении. Я рекомендую оставить их в воске до тех пор, пока вы не будете готовы установить их в вашу СБ. Это позволит вам не разбить их до того, как вы сможете их использовать.Поэтому постройте сначала основу для батареи. У меня же пришло уже время установить их.

Я начал с отрисовки сетки на каждой основе, для упрощения процесса установки каждого элемента. Потом я выложил элементы по этой сетке обратной стороной вверх, так их можно спаять вместе. Все 18 элементов для каждой половины батареи должны быть соединены последовательно,после чего обе половины также должны быть соединены последовательно для получения требуемого напряжения.

Спаивать элементы между собой поначалу сложно, но я быстро приловчился.Начинайте только с двух элементов. Разместите соединительные проводники одного из них так, чтобы они пересекали точки пайки на обратной стороне другого. Также нужно убедиться, что расстояние между элементами соответствует разметке.

Я использовал маломощный паяльник и прутковый припой с сердцевиной из канифоли. Также перед пайкой я смазывал флюсом точки пайки на элементах при помощи специального карандаша. Не давите на паяльник! Элементы тонкие и хрупкие, нажмете сильно – сломаете. Я был неаккуратен пару раз – пришлось выбросить несколько элементов.

Повторять пайку пришлось до тех пор, пока не получилась цепочка из 6-ти элементов. Соединительные шины от сломанных элементов я припаял к обратной стороне последнего элемента цепочки. Таких цепочек я сделал три, повторив процедуру еще дважды. Всего 18 элементов для первой половины батареи.

Три цепочки элементов должны быть соединены последовательно. Поэтому среднюю цепочку поворачиваем на 180 градусов по отношению к двум другим. Ориентация цепочек получилась правильной (элементы все еще лежат обратной стороной вверх на подложке). Следующий шаг – приклеивание элементов на место.

Приклеивание элементов потребует некоторой сноровки. Наносим небольшую каплю силиконового герметика в центре каждого из шести элементов одной цепочки. После этого переворачиваем цепочку лицевой стороной вверх и размещаем элементы по разметке, которую нанесли раньше. Легонько прижмите элементы, надавливая по центру, чтобы приклеить их к основе. Сложности возникают в основном при переворачивании гибкой цепочки элементов. Вторая пара рук тут не повредит.

Не наносите слишком много клея и не приклеивайте элементы нигде кроме центра. Элементы и подложка, на которой они смонтированы, будут расширяться, сжиматься, гнуться и деформироваться при изменении температуры и влажности. Если вы приклеите элемент по всей площади, он со временем сломается. Приклеивание только в центре дает элементам возможность свободно деформироваться отдельно от основы. Элементы и основа могут деформироваться по-разному и элементы не сломаются.

Вот полностью собранная половина батареи. Я использовал медную оплетку от кабеля для соединения первой и второй цепочки элементов.

Можно использовать специальные шины или даже обычные провода. Просто уменя под рукой была медная оплетка от кабеля. Такое же соединениеделаем с обратной стороны между второй и третьей цепочкой элементов. Каплей герметика я прикрепил провод к основанию, чтобы он не «гулял» ине гнулся.

Тест первой половины солнечной батареи на солнце. При слабом солнце в дымке эта половина генерирует 9,31В. Ура! Работает! Теперь мне нужно сделать еще одну такую же половину батареи. После того как обе основы с элементами будут готовы, я смогу установить их на место в подготовленную коробку и соединить. Каждая из половин помещается на свое место. Я использовал 4 небольших шурупа для крепления основы с элементами внутри батареи. Провод для соединения половин батареи я пропустил через одно из вентиляционных отверстий в центральном бортике. Тут тоже пара капель герметика поможет закрепить провод на одном месте и предотвратить его болтание внутри батареи.

Каждая солнечная батарея в системе должна быть снабжена блокирующим диодом,соединенным последовательно с батареей. Диод нужен для предотвращения разряда аккумуляторов через батарею ночью и в пасмурную погоду. Я использовал диод Шоттки на 3,3А. Диоды Шоттки имеют гораздо более низкое падение напряжения, чем обычные диоды. Соответственно, будут меньше потери мощности на диоде. Я купил набор из 25 диодов марки 31DQ03 всего за пару баксов. У меня останется еще много диодов для моих будущих СБ.

Сначала я планировал присоединить диод снаружи батареи. Но после того как посмотрел технические характеристики диодов, решил поместить их внутри батареи. У этих диодов падение напряжения уменьшается сростом температуры. Внутри моей батареи будет высокая температура, диод будет работать более эффективно. Используем еще немного силиконового герметика чтобы закрепить диод.

Я просверлил отверстие в днище батареи ближе к верху, чтобы вывести провода наружу. Провода завязаны на узел, чтобы предотвратить их вытягивание из батареи, и закреплены все тем же герметиком. Важно дать герметику высохнуть до того, как мы будем крепить оргстекло на место. Советую, опираясь на предыдущий опыт. Испарения из силикона могут образовать пленку на внутренней поверхности оргстекла иэлементов, если вы не дадите силикону высохнуть на открытом воздухе.

На выходной провод я прикрутил двух контактный разъем. Розетка этого разъема будет присоединена к контроллеру заряда аккумуляторов, который я использую для своего ветрогенератора. Таким образом, солнечная батарея сможет работать с ним параллельно.

Вот как выглядит законченная СБ с прикрученным экраном из оргстекла.Оргстекло пока еще не герметизировано. Я сначала не производил герметизацию стыков. Провел сначала небольшое тестирование. По результатам тестов мне потребовался доступ к внутренностям батареи, там обнаружилась проблема. У меня на одном из элементов отошел контакт. Может быть, это произошло из-за перепада температур или из-за неаккуратного обращения с батареей. Кто знает? Я разобрал батарею и заменил этот поврежденный элемент. С тех пор проблем не было. В будущем, возможно, я герметизирую стыки под оргстеклом при помощи герметика или закрою их алюминиевой рамкой.

Солнечная батарея в работе. Я перемещаю ее пару раз в день для сохранения ориентации на солнце, но это не такая уж и большая сложность. Возможно,когда-нибудь я построю автоматическую систему слежения за солнцем. Вольтметр показывает 18,88В без нагрузки. Это в точности как я и рассчитывал. Амперметр показывает 3,05А – ток короткого замыкания. Это как раз недалеко от расчетного тока элементов. Солнечная батарея прекрасно работает!

Итак, сколько же все это стоило? Я сохранил все чеки от всех своих покупок для этого проекта. Ну и конечно многое уже было у меня в мастерской. Всякие куски дерева, провода и прочие полезные вещи (кто-то скажет, мусор) валяются также у меня вокруг мастерской. Короче, много чего уже было под рукой. Поэтому ваши подсчеты могут отличаться:

  • Солнечные элементы — eBay — $74.00*
  • Дерево — Строительный магазин — $20.26
  • Оргстекло — Со свалки — $0.00
  • Шурупы — Из запасов — $0.00
  • Силиконовый герметик — Строительный магазин — $3.95
  • Провода — Из запасов — $0.00
  • Диод — $0.20±
  • Двухконтактный разъем — Newark Electronics — $6.08
  • Краска — Из запасов — $0.00
  • Итого$104.85

Не так уж и плохо! Это лишь малая часть стоимости серийной СБ такой же мощности. В экономический расчет не вошла и стоимость работ. У меня уже есть план построить еще несколько солнечных батарей, чтобы увеличить мощность. И это очень просто!

На самом деле я купил 4 набора по 18 элементов. В подсчете указана стоимость только двух наборов, которые пошли на построение солнечной батареи своими руками.

А теперь посмотрите на профессиональную сборку солнечных батарей.

Источник

Оцените статью