Что такое вакуумные солнечные батареи

Вакуумный солнечный коллектор. Принцип работы и оценка эффективности.

Вакуумный солнечный коллектор — оборудование, предназначенное для нагрева воды с помощью солнечной энергии.

Основным нагревательным элементом солнечного коллектора является вакуумная трубка с селективным покрытием. В простых термосифонных коллекторах процесс нагрева воды происходит непосредственно в самой трубке. За счет явления конвекции, нагретая вода перемещается вверх, холодная вниз.

Нулевая теплопроводность вакуума между внутренней и внешней трубкой обеспечивает сохранность тепла. Эффективность такой системы в теплое время года наиболее высокая. Так за один солнечный августовский день термосифонный водонагреватель нагревает 200 литров воды до 84°С.

Безупречная эффективность термосифонного водонагревателя в теплое время года оборачивается проблемой в холода: несмотря на 50мм теплоизоляцию бака-накопителя теплопотери в холодную ночь могут достигать 20-25°С.

Если же морозы продержатся несколько дней, а солнце не сумеет пробиться через плотный слой облаков, вода в трубках превратится в лед, а это может привести к разрыву внутренней трубки и выходу из строя всего коллектора.

Кроме того, замена даже одной трубки, требует слива всей воды в баке, что очень трудозатратно.

Для решения проблемы «сезонности», широко применяется в нашем климате вакуумная трубка Heat Pipe или так называемая «сухая трубка».

В стеклянную трубку вставлена медная трубка в алюминиевом рефлекторе, который выполняет роль мостика тепла. Процесс конвекции протекает уже внутри медной трубки HP.

Температура на конце трубки может достигать 250-280ºС. Существует два основных способа передачи этого тепла к потребителю:

1. Греем воду непосредственно в баке (система под давлением). Эта система проста и компактна, но за счет того, что бак расположен на улице, в зимнее время эффективность такой системы тоже имеет ряд ограничений.

2. Передаем тепло теплоносителю и греем воду в баке косвенного нагрева, расположенному в помещении. Поговорим более подробно о солнечном вакуумном коллекторе:

Такая система универсальна. Она может быть интегрирована в систему отопления и существенно сократить расходы на топливо.

Но не стоит рассматривать солнечный коллектор как единственный источник тепла в Вашем доме. Законы физики неумолимы! Когда светит солнце — коллектор работает. Когда солнца нет — не работает!

Рассчитать эффективность солнечного вакуумного коллектора для горячего водоснабжения в первом приближении поможет следующая методика:

  • Шаг 1. Определить, на сколько градусов должна повыситься температура воды и ее объем. Семья — 4 человека (2 взрослых и 2 ребенка). В среднем на одного человека расходуется в день 50 литров воды. Соответственно 50*4=200 л. Средняя температура водопроводной воды = 15°С. Она должна быть нагрета до 50°С. 50-15=35°С.
  • Шаг 2. Определить количество энергии необходимой для нагревания этого объема воды. Для нагрева одного литра воды на один градус надо затратить энергию равную 1 ккал. 200 л x 35°C = 7000 ккал. Для перевода данной энергии в кВт*ч воспользуемся следующей формулой 7000 / 859,8 = 8,14 кВт*ч (1 кВт*ч = 859,8 ккал)
  • Шаг 3. Определить количество энергии, которая может быть преобразована в тепло солнечным коллектором. Рассмотрим вариант расположения солнечной установки в Краснодаре. Значение солнечной радиации на поверхность, наклоненную к горизонту на 45° с ориентацией на юг, по данным за последние 22 года наблюдений: в июле на 1 м² составляет 5,44 кВт*ч/день, а в декабре 1,74 кВт*ч/день. Эффективность вакуумного солнечного коллектора традиционно принимают за 80%. Это не совсем верно, так как на КПД влияют многие факторы, мы поговорим о них ниже. Но для предварительного расчета примем эту цифру. Значение передачи поглощенной энергии вакуумными трубками равно 5,44 x 0,8 = 4,35 кВт*ч/день площади поглощения коллектора для июля. Значение передачи поглощенной энергии вакуумными трубками равно 1,74 x 0,8 = 1,39 кВт*ч/день площади поглощения коллектора для декабря. Площадь абсорбции вакуумной трубки диаметром 58 и длиной 1800 мм составляет 0,0937 м². Несложно подсчитать, что одна трубка способна получать и передавать солнечное тепло в размере 0,4075 кВт*ч и 0,13 кВт*ч соответственно в июле и декабре.
  • Шаг 4. Определить необходимое число трубок. Используя значение, вычисленное выше, определяем количество трубок, которое надо установить. Энергия, которую необходимо затратить на нагрев нужного количества воды, составляет 8,14 кВт*ч. Энергия, которую может передать одна вакуумная трубка, в зависимости от месяца составляет 0,4075 кВт*ч и 0,130 кВт*ч.

Июль – 8,14 / 0,4075 = 20 трубок. Декабрь – 8,14 / 0,130= 63 трубки.

Оптимальным выбором будет два 20-ти трубочных коллектора и бак на 220 литров с одним теплообменником.

Для наглядности приведем таблицу эффективности коллекторного поля из 40 трубок ориентированного на юг.

Угол наклона трубок к горизонту 45º, выраженную в кВт*ч в день тепловой энергии, опираясь на данные Национального Управления по Воздухоплаванию и Исследованию Космического Пространства (NASA), получаем следующий график:

Чтобы эти цифры обрели прикладное значение, давайте попробуем рассчитать, на какую температуру в баке накопителе мы можем рассчитывать?

Возьмем для примера рекомендованный из расчета бак на 220 литров.

Температура воды в баке на начало дня равна температуре в бойлерной, где он располагается и равна, предположим, 20ºС.

Сначала переводим кВт*ч в килокалории:

Теперь, определим, на сколько градусов нагреет воду в баке наш коллектор за один СРЕДНИЙ декабрьский день:

  • Pккал (мощность коллектора в ккал)
  • Vбака (Объем воды в баке): 220л
  • Δt искомая величина (значение температуры, на которое нагреется вода в баке за день).

Δt = Pккал/Vбака

Несмотря на хорошую теплоизоляцию теплопровода, мы потеряем часть тепла по пути до бака. Сам бак тоже обладает не 100% теплоизоляцией.

Так же процесс теплообмена между концом трубки Heat Pipe и теплоносителем и теплообмен в змеевике бойлера снижает общую эффективность системы. Так что можно смело списывать еще 10% для зимы, 5% для ноября и марта, 2% для апреля с октябрем. Летом можно принять этот вид потерь за ноль.

Δt= Pккал/Vбака*0,9

Δt дек=4486/220*0,9=18ºС

Казалось бы все ясно и понятно. НО! Мы опираемся на данные среднемесячных наблюдений. А это значит, что В СРЕДНЕМ по декабрю мы получим такую величину Δt. Давайте попытаемся понять, что значит это самое СРЕДНЕЕ: По данным портала: russia.pogoda360.ru солнечных дней в Краснодаре в декабре 31%, облачных 34%, пасмурных: 34%

В пасмурную погоду эффективность солнечного коллектора близка к нулю. Нет солнца — нет тепла.

Конечно какую-то энергию рассеянного солнечного излучения вакуумные трубки соберут, но при передаче ее воде бака естественные потери в теплотрассе и самом баке ее обнулят. Да и циркуляционный насос качающий теплоноситель не включится, если разность температур в коллекторе и баке не превысит хотя бы 10ºС.

Таким образом все те крохи тепла, что соберет коллектор просто развеятся. В такие дни поддержкой температуры в баке занимается электрический ТЭН, который предусмотрен во всех буферных емкостях. Если ТЭНа нет или он отключен, теплопотери бака ничем не компенсируются. Температура воды в баке сравняется с температурой воздуха в бойлерной.

Скорость с которой остынет вода, зависит от теплоизоляции бака и температуры внутри помещения. По эмпирическим данным потеря тепла составляет порядка 5-8ºС за 12 часов (ночь) при разнице температур в баке и помещении около 25ºС .
Если за сутки плотные тучи так и не рассеялись, наш бак остынет на 10-16 градусов. А за два дня потеряет все накопленное тепло.

В облачную погоду мы уже можем на что-то рассчитывать. Но опять же. Насколько она «облачна»? Сколько конкретно кВт*ч солнечного излучения приходит на нашу солнечную установку? В лучшем случае нам удастся компенсировать естественное остывание бака.

Рассчитать точное значение мощности солнечного коллектора в каждый день можно, но для этого нужно иметь данные инсоляции по каждому дню. Знать истинные цифры теплопотерь на конкретном объекте. Температуру воздуха и пр. Это имеет скорее научное, чем прикладное значение. Нам же надо понять принцип работы и возможности, которые предоставляет нам использование этого оборудования.

Итак, мы имеем среднее значение Δt=18ºС. Это значит, что в СРЕДНЕМ в декабре мы получим 38ºС в баке за один день. За ночь наш бак остынет, и если нам повезет и день снова будет СРЕДНИМ ( 🙂 ), к вечеру мы можем рассчитывать на 38-5+15=51ºС. Не учитывая потерь бака, о которых мы говорили выше. Но достаточно двух подряд пасмурных дней, чтобы вода в баке остыла до температуры окружающей среды. При этом, за два солнечных дня мы увидим 60-70 градусов на термометре бака, если не будет водоразбора. Где же этому предел? И почему мы так редко наблюдаем кипящую воду в баке зимой? Все дело снова в потерях! Чем выше разница между температурой в баке и воздухом в бойлерной, тем интенсивней идет теплообмен.

Так все-таки работает ли солнечный коллектор зимой или нет!?

Ответ: ДА работает! Но мы не можем рассматривать коллектор как единственный источник тепла. Лишь, как помощь основному источнику.

В среднем использование солнечного коллектора может экономить:

  • В зимний период от 20 до 40% энергии на отопление и ГВС.
  • В период с апреля по октябрь наши потребности в отоплении значительно ниже, а солнца больше. Здесь мы говорим о 60-70% на отопление и до 90% на ГВС.
  • С мая по сентябрь солнца много, потребности в отоплении нет совсем и мы закрываем 100%+ потребности в ГВС!

Вернемся снова к нашему расчету. Копнув чуть глубже мы выяснили, что не все так прямолинейно. И если расчет для ИЮЛЯ остается практически неизменным, то для февраля мы должны учесть потери как минимум 10%. Тогда наша формула будет выглядеть так:
Июль – 8,14 / 0,4075 = 20 трубок. Декабрь – 8,14 / (0,130*0,9)= 70 трубок.
Поэтому, нашей рекомендацией будет установка коллектора на 20 и 30 трубок, соединенных в группу на 50 трубок. И установка электроТЭНа на 2 кВт в бак накопитель.

Куда же девать излишки тепла летом? Решение зависит от конкретного объекта. Если есть бассейн — греем бассейн. Если нет — ставим тепловентилятор, который работает по принципу печки в автомобиле. Сбросом тепла управляет контроллер гелеосистемы. Все автоматизировано и не требует участия человека.

ИБП для гелиоустановки: Контроллер управления, циркуляционные насосы гелеосистемы и тепловентилятора работают от сети 220в 50Гц. В случае отключения электропитания в солнечный летний день, и остановки циркуляции теплоносителя ,температура в коллекторе достигнет предельных значений за считанные секунды.

Это может привести к аварии и дорогому ремонту оборудования. Поэтому, верным решением будет обеспечить их работу источником бесперебойного питания, состоящего из небольшого инвертора с зарядным устройством и аккумуляторной гелевой батареи.

Специалисты нашей компании имеют богатый практический опыт в проектировании и установке солнечного оборудования. А прямые поставки с заводов изготовителей, гарантируют лучшие цены на рынке.

Мы предлагаем нашим клиентам не просто оборудование, а комплексное решение задач отопления и горячего водоснабжения.

Источник

Читайте также:  Как можно использовать только солнечную панель
Оцените статью