Что такое турбина электрогенератора

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

Различия между турбиной и генератором

Турбины и генераторы используются для производства электроэнергии, но турбина преобразует доступные формы энергии во вращение, в то время как генератор преобразует вращение в электричество. В зависимости от типа энергии, которую они используют, электростанции имеют соответствующие типы турбин и используют их для производства электроэнергии. У турбин есть много других применений, кроме питания генераторов, но все генераторы производят электричество. В дополнение к различным целям и функциям турбины и генераторы строятся совершенно по-разному. Единственное, что у них общего – это то, что они оба вращаются.

Турбогенераторы используются для выработки электроэнергии. Тип используемой турбины зависит от типа энергии, используемой для питания турбины. Например, реактивный двигатель использует реактивное топливо для питания своей турбины, в то время как ветровая турбина использует энергию ветра. Даже когда турбины похожи, они могут использовать разные виды топлива. Например, разница между газовыми и паровыми турбинами заключается в том, что газовая турбина сжигает природный газ, а паровая турбина приводится в действие паром из котлов. В каждом случае внешний источник энергии заставляет турбину вращаться.

Вал турбины соединен с валом генератора, и турбина заставляет генератор вращаться. Некоторые турбины, например, используемые для генераторов реактивных двигателей, вращаются очень быстро. В этом случае скорость может быть уменьшена с помощью коробки передач перед подключением к генератору. Когда генератор вращается, проволочные катушки движутся через магнитное поле, и в проводах возникает электрический ток. Электрический ток проходит по линиям электропередачи в дома, где он питает осветительные приборы, электрические обогреватели и электроприборы.

Читайте также:  Блоки автозапуска для электрогенератор

Турбины состоят из лопастей, которые вращаются вокруг центрального вала, как вентиляторы. Ветровые турбины – хороший пример больших турбин, которые вращаются медленно. Для водяных турбин есть только несколько больших лопастей, в то время как для газовых и паровых турбин есть много слоев маленьких лопастей, которые быстро вращаются. В любом случае жидкость или газ, такой как вода или воздух, протекают через лопасти, заставляя их вращаться и приводить в движение вал турбины.

Генераторы также имеют центральный вал, но на нем установлены магниты, намотанные проволокой. Вал и магниты составляют ротор генератора. Вокруг вала и магнитов расположены неподвижные витки провода, из которых состоит статор генератора. Когда вал вращается, магниты ротора создают магнитные поля, которые проходят по катушкам провода в статоре, генерируя в них электрический ток. В некоторых генераторах магниты остаются неподвижными, а катушки с проволокой устанавливаются на валу. В любом случае, генераторы всегда имеют магнитные поля, проходящие по катушкам провода, чтобы произвести электрический ток.

Турбины могут быть использованы для генераторов энергии, но они также используются во многих других приложениях для производства энергии вращения, в основном для транспортировки. Реактивные двигатели – это турбины, работающие на керосине и производящие мощность для вращения винтов или ускорения горячих газов для создания тяги реактивного самолета. Газовые турбины сжигают природный газ для питания судов, а паровые турбины используют давление от котлов для производства вращающейся энергии для промышленности. Вращающую силу от турбин можно использовать везде, где требуется привод вращающихся валов.

Единственная функция генераторов – производить электроэнергию, но они используются по-разному. Помимо выработки электроэнергии для электрических сетей на электростанциях, они используются на судах, на морских нефтяных платформах и в самолетах для производства электроэнергии, необходимой для освещения и электрических систем управления. В автомобилях есть небольшие генераторы для выработки электроэнергии для зарядки автомобильного аккумулятора, а также аварийные генераторы, которые используются в случае сбоя основного питания.

Поскольку турбины и генераторы часто используются вместе в таких областях, как электростанции и ветряные электростанции, кажется, что они связаны и работают одинаково. Фактически это две разные машины, которые выполняют разные функции и работают на основе совершенно разных принципов.

Источник

Синхронный турбогенератор

Рассмотрены принцип работы, характеристики, внешний вид, конструкция и методы диагностики синхронных турбогенераторов. Даны примеры расшифровки типов.

1. Принцип работы

Механическая энергия самой турбины (рис.1) превращается в электрическую. Это возможно благодаря вращающемуся магнитному полю, создаваемого с помощью непрерывного тока, протекающему в обмотке самого ротора. Это способствует и формированию трехфазного переменного тока, а также напряжению в статоре (его обмотках). Крутящий момент от двигателя передается на ротор генератора.

Данная характеристика турбогенератора позволяет при обращении ротора образовывать магнитный момент, который и создает электрический ток в его обмотках. Благодаря системе возбуждения в агрегате обеспечивается поддержка постоянного напряжения на всех режимах функционирования данного устройства.

Циркуляция воды в теплообменниках и газоохладителях происходит при помощи насосов, которые располагаются вне самого турбогенератора.

Рисунок 1 – Общий вид турбины

2. Характеристики

В зависимости от мощности данного оборудования, его разделяют на три основные категории:

  • 2,5 – 32 МВт;
  • 60 – 320 МВт;
  • мощность турбогенераторов более чем 500 МВт.

Что касается частоты вращения, то турбогенераторы бывают:

  • двухполюсные с частотой вращения от 1500 до 1800 оборотов в минуту;
  • четырёхполюсные (300 – 3600 об/мин).

В зависимости от электрической мощности и самих технических задач энергоснабжения, различают следующие типы турбогенераторов с различными системами охлаждения:

  • масляные;
  • воздушные;
  • водородные;
  • асинхронные;
  • комбинированные водородно-водяные.

Последний тип данных устройств чаще всего используют для работы на АЭС. Асинхронные же турбогенераторы нашли своё применение в энергетических системах с высокими колебаниями нагрузки и составе мощных ТЭЦ. Агрегаты масляным и воздушным охлаждением применяют для работы на тепловых электростанциях (ТЭС), обладающих различной мощностью.

3. Внешний вид

В качестве примера показан продольный разрез турбогенератора (рис.2) мощностью 12 МВт с воздушным охлаждением.


Рисунок 2 – Общий вид современного турбогенератора

  • 1 – уплотнения на валу ротора;
  • 2 – торцевой щит;
  • 3 – кронштейн крепления;
  • 4 – ротор;
  • 5 – магнитопровод статора;
  • 6 – детали крепления магнитопровода к корпусу;
  • 7 – корпус турьогенератора;
  • 8 –охладитель турбогенератора;
  • 9 – возбудитель;
  • 10 – патрубок подвода воды к охладителю;
  • 11- охладитель возбудителя;
  • 12 – маслопровод к подшипнику;
  • 13 – стойка подшипника;
  • 14 – термометр;
  • 15 – трубки для циркуляции воды в охладителе;
  • 16 – бандажные кольца обмотки статора;
  • 17 – бандажное кольцо ротора;
  • 18 – центробежный вентилятор;
  • 19 – фланец для соединения вала ротора с турбиной

4. Конструкция

Основные конструктивные элементы турбогенератора – это ротор и статор.

Ротор турбогенератора

Чтобы сформировалась высокая прочность, ротор турбогенератора выпускают в виде толстого цилиндра из сплошной стальной заготовки. В таком случае используют углеродистую сталь, как правило, марки «35» (в случаи малой нагрузки данного агрегата).

Ротор турбогенератора (рис.3) оснащен двумя рядами отверстий, расположенных вдоль первых обмоточных отверстий. Необходимо это, чтобы закрепить там специальные балансировочные грузы. Длина ротора турбогенератора существенно меньше его активных размеров.

Рисунок 3 – Общий вид ротора

  • 1 – контактные кольца;
  • 2 – кольцевые бандажи;
  • 3 – бочка ротора;
  • 4 – вентилятор;
  • 5 – вал

При частоте вращения порядка 3000 оборотов в минуту, ротор изготавливают диаметром в 1,2 метра. Обмотку делают из специальной полосовой меди с дополнительной присадкой серебра. Она удерживается в пазах благодаря дюралевым клиньям.

Для того, чтобы повысить тепловую стойкость ротора от воздействия на него обратных токов, сверху изоляции обмотки укладываются короткозамкнутые кольца, которые изготавливают в виде двухслойного медного гребенка.

Для повышения единичной мощности охлаждение турбогенератора делают более интенсивным, без существенного увеличения габаритов. Если нагрузка таких устройств превышает 50 Вт, то используют жидкое либо водородное охлаждение его обмоток.

Статор турбогенератора

Статор (рис.4) изготавливается из корпуса, в котором имеется сердечник с углублениями для установки в них обмотки. В основу сердечника входят слои, которые набираются из нескольких листов стали (электротехнической), дополнительно имеющих лаковое покрытие. Между этими слоями имеются специальные каналы для вентиляции (порядка 5 – 10 сантиметров).

В месте, где находятся углубления, обмотка закрепляется при помощи клиньев, а ее передняя часть укреплена на специальных кольцах. Располагается она с конца статора. Сам сердечник помещен в прочный сварной корпус, изготовленный из стали.

Рисунок 4 – Общий вид статора

Возбуждающий режим (система возбуждения)

В виде основного такого метода служит бесщеточная система. Возбудитель закрытого типа обладает изолированной вентиляцией. Для турбогенераторов, производительность которых составляет 160 – 800 Мегаватт, используется тиристорная система, с самостоятельной активизацией. Сам возбудитель представляет собой синхронный трехфазный генератор переменного тока.

При помощи термопреобразователей осуществляется проверка теплового режима главных узлов, а также охлаждающей системы. Подсоединяются они к установке центрального управления.

Благодаря специальной аппаратуре можно осуществлять контроль давления, расход охлаждающей воды, дистиллята, следить за давлением масла и т.п. С ее помощью происходит непрерывное отслеживание всех изменений заданных параметров от нормы.

На данных агрегатах устанавливают и специальные системы защиты. Такая характеристика турбогенератора сообщает о снижении уровня воды, расходуемой в газоохладителе.

5. Диагностика турбогенераторов

Средний срок эксплуатации турбогенератора составляет 30 лет. Несложно представить, что за такой длительный период машина может выйти из строя полностью или частично, и по этой причине владельцы подобных агрегатов проводят тестирование и диагностику через определенные промежутки времени.

На данный момент существуют специальные компании, которые предлагают свои услуги в сфере обслуживания генераторов, также можно проводить испытания самостоятельно. Существуют некоторые различия между методами проведения проверки всех частей конструкций на исправность. Чтобы понять, какая диагностика турбогенераторов будет наиболее подходящей для того или иного предприятия, стоит детально изучить все методы.

Методы и способы проведения диагностики турбогенераторов

Диагностику генераторов проводят по таким методам:

  • Классические;
  • В эксплуатации под рабочим напряжением;
  • От постороннего источника напряжения.

Классический способ диагностики турбогенераторов

Это один самых давних, но далеко не самых удачных методов диагностики, который заключается в проверке машин в «шоковом» режиме и учете срока эксплуатации. При таких испытаниях диагностика турбогенераторов не только не дает ответы на самые основные вопросы (какие части нужно заменить и сколько еще проработает агрегат), но и может полностью вывести его из строя, что является весьма значимой статьей расходов.
Поскольку такой метод исследований очень опасный и малоэффективный, во многих странах мира его стараются заменить неразрушающими методами диагностики изоляции.

Мониторинг разрядной активности в контролируемой изоляции помогает не только точно установить все дефекты и поломки, но и классифицировать их по степени опасности. Исходя из этих данных проводится ремонт, обусловленный реальными потребностями машин.

Диагностика турбогенератора в эксплуатации под рабочим напряжением

Чтобы провести объективную оценку технического состояния генератора, лучше всего воспользоваться этим неразрушающим методом, а по его результатам определить, нужны ли испытания с посторонним источником напряжения. Диагностика турбогенераторов в этом случае осуществляется в несколько этапов. Первый из них заключается в том, что периодически проводятся замеры разрядной активности машины, этот процесс осуществляется при помощи специальных датчиков, установленных на торцевые щиты генератора, и подключенных к анализатору потока импульсов. На следующем этапе проводится замер разрядной активности, при этом меняется и активная и реактивная мощность.
На этом этапе можно выявить такие дефекты:

  • Проблемы в обмотке ротора или статора;
  • Ухудшение состояния железных пакетов;
  • Ослабление заклиновки стержней в пазах;
  • Ослабление вязок корзины;
  • Загрязнения в обмотке.

При обнаружении данных проблем проводится следующий этап мониторинга – объемная локация. На этой стадии диагностики удается выявить все дефекты, четко определить места их дислокации и классифицировать поломки. Проводятся подобные исследования при помощи специальных датчиков и осциллографа.

После проведения всех работ делается заключение, в котором указывается, можно ли эксплуатировать генератор, нужны ли проверка от постороннего источника напряжения и дальнейший ремонт машины.

Испытания турбогенераторов от постороннего источника напряжения

Этот метод исследований также проводится в несколько этапов. В первую очередь стоит провести разборку машины и оценить визуально все ее детали, сфокусировать внимание на следах истирания изоляции. Если таковые обнаруживаются, они отправляются на лабораторные исследования, которые помогают вычислить степень истирания.

Также стоит внимательно осмотреть защитное покрытие, по его состоянию можно сделать вывод касательно уплотнения подшипников и уровня эксплуатации машины. Далее проводится несколько измерений разрядной активности на каждой из обмоток. Это помогает находить стержни с дефектами и определять степень их опасности, возможность дальнейшей эксплуатации.

Диагностика турбогенераторов такими методами помогает наиболее точно определять уязвимые места, классифицировать их по степени опасности и проводить ремонт с учетом реальных потребностей агрегатов, а не технических рекомендаций.

6. Расшифровка

Таблица 1 – Расшифровка буквенных и цифровых обозначений наименования турбогенератора

1. Турбогенератор Т
2. Тип первичного двигателя
паровая турбина Г
газовая турбина В
3. Охлаждение
газовое Г
водородное В
форсированное Ф
Мощность, МВт [число]
Количество полюсов [число]

Примечание: буквенные обозначения в названии генератора записываются слитно, а числовые — через тире.

Примеры расшифровки наименований турбогенераторов:

  • Т-6-2 — турбогенератор мощностью 6 МВт с двумя полюсами;
  • ТП-12-2 — турбогенератор приводимый паровой турбиной, мощностью 12 МВт с двумя полюсами;
  • ТВС-30 — турбогенератор с водяным охлаждением, серия С, мощностью 30 МВт;
  • ТВ-60-2 — турбогенератор с водяным охлаждением, мощностью 60 и двумя полюсами;
  • ТВ2-100-2 — турбогенератор с водяным охлаждением, серия 2, мощностью 100 МВт, двумя полюсами;
  • ТВФ-63-2 — турбогенератор с водяным форсированным охлаждением, мощностью 63 МВт и двумя полюсами;
  • ТВВ-160-2 — турбогенератор с водородно-водяным охлаждением, мощностью 160 МВт и двумя полюсами;
  • ТГВ-300 — турбогенератор с газовым водородным охлаждением, мощностью 300 МВт.

Заключение

Турбогенераторы представляют собой генераторы синхронного типа, которые напрямую подсоединены к ТЭС. Турбины их работают на органическом топливе и поэтому обладают самыми высокими показателями экономичности. Особенно это касается большой частоты их вращения. Это генерирующее оборудование обеспечивает около 80 процентов суммарного мирового объема вырабатываемой электрической энергии.

Источник

Оцените статью