Что такое ток короткого замыкания солнечной батареи

Часто задаваемые вопросы по солнечной энергетике

Вопрос: Возможно подключить нагрузку через инвертор напрямую к солнечному модулю, без аккумулятора?
Ответ: Существуют типы инверторов которые это допускают, но для обычных инверторов это окончится фатально. Нагрузка будет работать крайне нестабильно из-за изменений освещенности и кроме того с солнечной батареи инвертор не сможет «взять» ток больше её тока короткого замыкания.Аккумулятор накапливает энергию, позволяет включать нагрузки, превышающие мощность солнечной батареи;

Вопрос: Хочу установить СБ у себя в квартире в обычном высотке? Это возможно?
Ответ: Это возможно, но вопрос лишь в том насколько это целесообразно и какую Вы преследуете цель.Сомнительна экономическая целесообразность мероприятия- электричество, получаемое от солнца гораздо дороже традиционного электричества из «розетки», к тому же по разным причинам объемы получаемой энергии будут незначительны. Вы можете направить эту энергию на работу какой либо маломощной нагрузки, к примеру освещения на балконе, освещения аквариума, прочих мелких нужд, а также для «экзотики» или исследований;

Вопрос: У меня часто бывают перебои в электроснабжении. Могут ли солнечные батареи решить проблему?
Ответ: Для ответа на Ваш вопрос нужно все тщательно рассчитать. В расчете нужно учесть расход энергии в периоды отключения внешней сети, длительность отключения, имеется ли сезонность в отключениях, какова инсоляция в Вашем регионе с учетом предыдущего замечания. Как альтернатива решению с солнечными батареями может выступить обычная система резервного питанияя с возможностью запуска генератора в ручном или автоматическом режиме для заряда АКБ, т.к. солнечная система скорее всего будет слишком дорогой, да и попросту не сыграть никакой роли, если отключение произойдет ночью или в пасмурный день;

Вопрос: Какова эффективность крепления солнечной батареи на поворотную платформу?
Ответ: При слежении с помощью трекера за движением светила по азимуту дополнительная выработка 20%, при слежении еще и по высоте солнца плюс еще 10%;

Вопрос: В купленном мной солнечном модуле защитное стекло шершавое и напоминает пластик, что это?
Ответ: Нет, конечно это не пластик, а текстурированное стекло, к тому же закаленное. Вас вводит в заблуждение рисунок на поверхности, называемый текстурой. Для проверки Вы можете убедиться в этом ударив со всей силы молотком или кувалдой, а потом заказать новый солнечный модуль:) Такое стекло с текстурой отражает от своей поверхности меньше света, особенно это актуально под острыми углами падения излучения и такая поверхность более выигрышна по сравнению с обычным гладким стеклом;

Вопрос: На этикетке солнечного модуля и его паспорте заявлена некая мощность модуля, но в реале я чаще всего наблюдаю что батарея выдает мощность меньше этой величины. С чем это связано?
Ответ: Тестирование и паспортизация солнечных модулей проходит в определенных условиях освещенности, температуры и спектра источника света. Подобные условия(STC- Standart Test Condition, E=1000Вт/м*2, Т=25С, АМ=1.5) приняты единые во всем мире. В реальной жизни условия эксплуатации довольно значительно отличаются от тестовых. В первую очередь это интенсивность освещенности. На стенде модуль замеряется при освещенности 1000Вт/м*2, а в природе подобная освещенность редко достигается на широтах нашей страны. Даже в яркий солнечный день освещенность не превышает обычно 800-900Вт/м*2. Освещенность на поверхности солнечного модуля также сильно зависит от того насколько оптимально модуль ориентирован к солнечным лучам — если они падают на поверхность модуля не под прямым углом, то освещенность ниже максимально возможной в этом месте в это время. Во вторых под воздействием солнечного излучения солнечная батарея сильно(до 60-65С) нагревается и теряет в мощности. Именно поэтому солнечная батарея в морозный солнечный день может дать паспортную мощность и даже больше, если имеются переотражения от снега или иных предметов.

Вопрос: В некоторых модулях внутри соединительной коробки имеются какие то диоды. Зачем они нужны?
Ответ: Да, в модулях мощности более 60Вт есть подобные диоды. Такие модули бывают в составе систем мощности более 1кВт. А в таких системах средней мощности актуальна проблема выхода из строя модулей при частичном затенении. Эти диоды закорачивают затененную часть солнечного модуля для предотвращения выхода его из строя.

Вопрос: Насколько оправдано приобретение солнечных модулей имеющих КПД 20% и более?
Ответ: Надеюсь что Вы не собираетесь выводить модули на космическую орбиту и имеете ограничение по весу:). Ну а если серьезно, то при отсутствии ограничений на площадь, отводимую под солнечные модули(например на катере), то экономичней покупать модули с типичным для массового производства КПД 16-18%. Модули с высоким КПД стоят дорого и покупка их нецелесообразна для обычных целей;

Вопрос: Вы рекомендуете покупать специализированные АКБ вместо стартерных автоаккумуляторов при комплектации солнечной электростанции? Почему?
Ответ: Все дело в том , что автомобильные АКБ «заточены» под абсолютно другой режим работы, а именно на кратковременные большие стартерные токи , и вследствие этого срок эксплуатации стартерных АКБ при разряде малыми токами меньше, чем у специализированных АКБ, изготовленных технологии GEL и AGM. Кроме того стартерные АКБ крайне чувствительны к глубоким разрядам;

Вопрос: Как правильно подобрать сечение кабеля для компонентов солнечной установки?
Ответ: В разделе «Энциклопедия» в разделе «Самостоятельный монтаж системы» , а также в паспорте изделия приведены таблица и формула для расчета площади сечения кабеля в зависимости от величины протекающего тока, а также длины провода;

Вопрос: Мне сказали , что нужно соблюдать определенную последовательность при коммутации солнечной батареи, контроллера и аккумулятора.
Ответ: Да, это действительно очень важный момент. Необходимо первым подключить к контроллеру аккумулятор, затем солнечную батарею и только затем нагрузку. Если нужно все разобрать, то последовательность обратная. Несоблюдение этой последовательности приводит к выходу из строя контроллера. Иными словами нельзя оставлять контроллер с каким то напряжением «наедине», если не подключен аккумулятор;

Вопрос: Какие основные компоненты присутствуют в комплекте солнечной электростанции?

Читайте также:  Солнечные элементы для сборки солнечных батарей

Ответ: Ответ: Помимо солнечной батареи в комплект фотоэлектрической станции входят: 1)Аккумулятор. Он выступает как буфер и накапливает энергию получаемую от СБ в течении дня; 2)Контроллер заряда- ведет интеллектуальный заряд АКБ, защищает АКБ от перезаряда и глубокого разряда; 3)Инвертор- преобразует постоянное напряжение АКБ в

220В, если имеются нагрузки переменного тока; 4)Соединительные кабели; 5)Знания по монтажу системы:)

Вопрос: Короткое замыкание полюсов солнечной батареи как то отражается на её работе и ресурсе?
Ответ: Нет, СБ — это источник тока, которому не страшно короткое замыкание.;

Вопрос: Возможно применить обычный выпрямительный диод и не использовать контроллер заряда, чтобы АКБ не разряжался через СБ при низкой освещенности?
Ответ: Это возможно, если мощность СБ очень мала, а емкость аккумулятора велика. В этом случае перезаряд аккумулятора невозможен, но если мощность СБ значительна, то Вам необходимо вручную следить за заряженностью АКБ во избежание перезаряда и глубокого разряда АКБ. Обе крайности ощутимо сокращают жизнь АКБ;

Вопрос: Как должны соотноситься номинальное напряжение солнечной батареи и аккумулятора?
Ответ: Если Вы используете контроллер заряда ШИМ(PWM), то номинальное напряжение АКБ и СБ обязаны быть идентичны. При использовании контроллера заряда технологии МРРТ возможно подключить на его вход СБ с напряжением гораздо большим чем напряжение АКБ.Собственно в этом и состоит смысл МРРТ. Собственно в этом и состоит смысл МРРТ. Подробнее смотрите в разделе «Дополнительное оборудование-Контроллеры»

Вопрос: Я планирую установить солнечные батареи, но зимы у нас снежные и я хочу спросить как бороться со снежным покровом на СБ?
Ответ: Рецепт один- чистить+чистить. Любые механические способы подойдут, за исключением тех что могут нанести ущерб целостности СБ. Это может быть веник, швабра и т.д. и т.п. Например, иногда вполне достаточно подмести модуль, а оставшийся снег сходит довольно быстро с темной поверхности модуля;

© 2001-2015 «SOLBAT-Солнечные батареи», Все права защишены. Копирование запрещено.

Источник

Параметры солнечного элемента

Вольт-амперная характеристика СЭ представляет собой суперпозицию вольт-амперной характеристики диода в темноте и светового тока СЭ.

Под действием света вольт-амперная характеристика смещается вниз в четвертую четверть, в которой находится полезная мощность. Освещение СЭ добавляет световой ток к темновому току и уравнение диода принимает вид:

Уравнение вольт-амперной характеристики в первой четверти записывается как

Слагаемым (-1) в этом уравнении обычно можно пренебречь. Экспоненциальная составляющая обычно >> 1 для всех напряжений, кроме очень маленьких (меньше 100 мВ). При низких напряжениях световой ток IL преобладает над током I0(. ), поэтому (-1) можно опустить.

Темновой ток , I0 = 1e-10 A
Световой ток , IL = 0.5 A
Коэффициент идеальности , n = 1

Температура, T = 300 K

Напряжение, V = 0.5 В
Ток, I = 0.4753 A

Далее обсуждаются некоторые важные параметры, используемые для характеристики СЭ. Основными среди них являются ток короткого замыкания ISC, напряжение холостого хода VOC, коэффициент заполнения FF и коэффициент полезного действия. Эти параметры можно рассчитать из вольт-амперной характеристики.

Ток короткого замыкания

Ток короткого замыкания возникает в результате генерации и разделения сгенерированных светом носителей. В идеальном СЭ при условии умеренных резистивных потерь ток короткого замыкания равен световому току. Поэтому ток короткого замыкания можно считать максимальным током, который способен создать СЭ.

Ток короткого замыкания зависит от ряда параметров, описанных ниже: — Площадь СЭ. Обычно вместо тока короткого замыкания рассматривают плотность тока короткого замыкания (Jsc в мА/см2). Это позволяет не учитывать площадь СЭ.
— Число фотонов (то есть мощность падающего излучения). ISC прямо зависит от интенсивности света, как это было показано в пункте «Влияние интенсивности излучения».
— Спектр падающего излучения. Для большинства измерений проводимых с СЭ используется спектр при условии AM1.5.
Оптические свойства (поглощение и отражение) СЭ. О них говорится в пункте «Оптические потери».
— Вероятность разделения носителей в СЭ, которая зависит главным образом от пассивации поверхности и времени жизни неосновных носителей в базе.

При сравнении однотипных СЭ критическим параметром является диффузионная длина и пассивация поверхности. В СЭ с идеально пассивированной поверхностью и равномерной генерацией ток короткого замыкания можно записать, как

где G — скорость генерации, Ln и Lp диффузионная длина электронов и дырок соответственно. Хотя это уравнение использует некоторые допущения, не выполняющиеся в большинстве реальных СЭ, оно показывает, что ток короткого замыкания сильно зависит от скорости генерации и диффузионной длины.

Максимальная плотность тока солнечных кремниевых элементов при условии АМ 1.5 равна 46 мА/см2. Плотность тока лабораторных СЭ достигает 42 мА/см2, коммерческих — 28 — 35 мА/см2.

Световой ток и ток короткого замыкания (IL или Isc ?)

Также предполагается, что IL зависит только от падающего излучения и не зависит от напряжения на СЭ. Однако на самом деле это не так и в некоторых СЭ IL зависит от напряжения.

Напряжение холостого хода

Voc можно определить, положив в уравнении СЭ ток равным нулю:

Ток насыщения , I0 = 1e-10 A
Световой ток , IL = 0.5 A
Коэффициент идеальности , n = 1

Температура, T = 300 K
Voc = 0.578 В

Это уравнение показывает, что Voc зависит от тока насыщения СЭ и светового тока. Обычно ISC изменяется незначительно, поэтому основное влияние на Voc оказывает ток насыщения, который может изменятся на порядок. Ток насыщения I0 зависит от рекомбинации в СЭ. Значит напряжение холостого хода характеризует рекомбинацию в устройстве. Напряжение холостого хода монокристаллических СЭ высокого качества достигает 730 мВ при условии АМ1.5, 1 Sun. В коммерческих устройствах оно обычно находится на уровне около 600 мВ.

Voc также можно определить из концентрации носителей:

где kT/q — тепловое напряжение, NA — концентрация легирующей примеси, Δn — концентрация избыточных носителей, ni — собственная концентрация. Когда Voc определяют через концентрацию носителей, его также называют значащим напряжением.

Концентрация легирующей примеси , NA = 1.5e16 cм-3
Концентрация избыточных носителей, Δn = 1e15 cм-3
Температура, T = 298 K
Собственная концентрация носителей , ni = 8.6e9 cм-3
Voc = 0.667 В

Зависимость выходного тока (красная линия) и мощности (синяя линия) СЭ от напряжения. Так же показаны точки тока короткого замыкания, напряжения холостого хода, максимальных тока и напряжения. Нажмите на изображение, чтобы увидеть, как изменяется кривая для СЭ с низким FF. Так как FF является мерой квадратичности вольта-амперной кривой, СЭ с более высоким напряжением будет иметь более большой возможный FF. Это следует из того, что закругленная часть кривой занимает меньше места. Максимальный теоретически возможный FF можно определить дифференцируя мощность по напряжению и приравнивая производную к нулю:

Однако этот метод не дает окончательного уравнения. Уравнение выше связывает VOC и VMP. Чтобы найти FF и IMP нужно записать дополнительные уравнения. Часто используют эмпирическое уравнение для FF:

где VOC — это значащее VOC.

Напряжение холостого хода , Voc = 0.6 В
Коэффициент идеальности , n = 1

Температура, T = 300 K
значащее VOC , voc = 23.1884 В
Коэффициент заполнения , FF = 0.8274

Это уравнение показывает, что чем больше напряжение, тем больше теоретический FF. Для СЭ, выполненных по одинаковой технологии, значения VOC обычно отличаются не очень сильно. Например, под действием 1 Sun разница между лабораторными и коммерческими СЭ составляет около 120 мВ, что дает максимальный FF 0.85 и 0.83 соответственно. FF может различаться существенно для СЭ из разных материалов. Например, FF солнечных элементов на основе GaAs может достигать 0.89.

Также уравнение, записанное выше, показывает важность коэффициента идеальности СЭ, называемого n-фактором. Величина коэффициента идеальности характеризует качество p-n перехода и говорит о виде рекомбинации в СЭ. При наличии обычных механизмов рекомбинации, n-фактор равен 1. Однако, в других случаях n может принимать значение 2 и др. Высокое значение n уменьшает не только FF, но и напряжение холостого хода, так как оно свидетельствует о наличие высокой скорости рекомбинации.

На практике FF всегда ниже идеального значения в следствие присутствия паразитных сопротивлений, о которых говорится в пункте «Влияние паразитных сопротивлений». Поэтому FF чаще всего определяют из вольт-амперной характеристики как максимальную мощность деленную на произведение ISC и VOC:

Напряжение холостого хода , Voc = 0.611 В
Ток короткого замыкания , Isc = 2.75 A
Напряжение в точке максимальной мощности , Vmp = 0.500 В
Ток в точке максимальной мощности , Imp = 2.59 A
Результирующий коэффициент заполнения, FF = 0.7707

Коэффициент полезного действия

КПД СЭ определяется, как часть падающей энергии, преобразованной в электричество:

где Voc — напряжение холостого хода
Isc — ток короткого замыкания
FF — коэффициент заполнения
η — КПД

Для элемента площадью 10×10 см2 при плотности потока падающего излучения 100 мВт/см2

Voc = 0.611 В
Isc = 3.5 A
FF = 0.7

Pin = 10 Вт
Pmax = 1.1762 Вт
КПД, η = 14.9695 %

Источник

Оцените статью