Что такое солнечные батареи космической станции

В чем преимущества использования солнечных батарей в космосе

Как только человек научился выводить на орбиту космические аппараты, встал вопрос о возможности их долговременного использования. Корректировка орбиты, передача данных, снабжение электричеством спутников и жилых станций требовало наличия энергии. А получать ее круглосуточно за пределами земли можно было только от солнца. Так в космосе появились солнечные батареи, первые из которых были созданы почти одновременно с началом освоения околоземного пространства.

Создание и использование фотоэлектрических панелей для внеземных аппаратов

«Пионерами» разработки фотовольтаики данного типа стали инженеры СССР. Для космических кораблей «Восход», «Восток» и орбитальных станций «Салют» были использованы гелиопанели, созданные группой физика Н.С.Лидоренко. Он же произвел точные математические расчеты эффективности солнечных батарей в космосе для технологий того времени.

На тот момент КПД ячеек на базе кремния едва достигал 8-10%, однако конструкция модулей отличалась высокой надежностью. Основные идеи и технологические решения советских ученых лежат в основе и нынешней космической фотовольтаики.

За прошедшие с той поры 60 лет подобными панелями были оснащены:

  • более 250 межпланетных станций (единственное исключение – 4 аппарата, запущенных в дальний космос и получающих энергию от радиоактивных элементов);
  • свыше 3300 спутников, включая быстро увеличивающуюся группу «StarLink» Илона Маска;
  • 72 лунохода, длительное функционирование которых требовало постоянного притока энергии;
  • 14 марсоходов, включая американский и китайский аппараты, направленные к Марсу в 2020 году.
Читайте также:  Опора с солнечной панелью

Достоинства и недостатки солнечных батарей в космосе

Как и любое другое высокотехнологичное оборудование, фотоэлектрические панели для внеземного пространства обладают достоинствами и недостатками.

  • за пределами земли нет атмосферы, дождей и туч, поток солнечного излучения постоянен, а потому панели генерируют ток круглосуточно (исключение – аппараты на Луне и Марсе);
  • инсоляция в безвоздушном пространстве значительно выше, что увеличивает эффективность использования солнечных батарей в космосе;
  • у космической фотовольтаики КПД достигает 40-45%.
  • из-за огромных температурных перепадов, микро метеоритов и жесткого космического излучения панели быстрее деградируют;
  • солнечные батареи для космоса обходятся в немалые суммы сами по себе, а их доставка на орбиту требует дополнительные 2-2,5 тысячи долларов за каждый килограмм массы;
  • неблагоприятные условия функционирование вынуждают использовать многоуровневую защиту всех элементов модулей, что делает их еще дороже и массивнее.

Тем не менее, достойной альтернативы гелио панелям за пределами планеты для выполнения тех же задач пока не существует.

Космические СЭС будущего

Еще одной невероятно перспективной сферой применения солнечных батарей в космосе является создание в ближайшем будущем масштабных орбитальных электростанций. Причина такого интереса к данному проекту в следующем:

  1. Мощность потока излучения нашего светила, направленного в сторону земли, в тысячи раз превосходит всю потребляемую человечеством энергию.
  2. Размещение любого количества гелио панелей на орбите ничем не ограничено. Теоретически из них можно образовать огромные поля площадью с миллионы квадратных километров.
  3. Генерация энергии будет происходить в режиме 365/24/7, с возможностью передачи ее на землю по микроволновому лучу.

В настоящий момент единственным препятствием реализации такого проекта является его запредельная стоимость. Однако в будущем, с появлением технологий вроде «космического лифта», вывод на орбиту грузов подешевеет примерно в 1000 раз. И тогда создание подобных «СЭС будущего» может превратиться в реальность.

Какие солнечные батареи в космосе обеспечивают наибольшую эффективность?

Изначально космические панели создавались на базе монокристаллического кремния. Помимо низкой производительности, они имели и ряд других недостатков.

Сегодня в фотовольтаике для внеземного пространства используются исключительно тонкопленочные технологии. Основой ячеек являются композиты редкоземельных элементов типа CIGS, представляющие собой чередующиеся слои сульфидов галлия, индия и прочих редких металлов.

Это позволяет кардинально повысить поглощение фотонов разной длины волны, что увеличивает КПД и долговечность системы в несколько раз.

Такие солнечные батареи обходятся дороже, но в космической промышленности цена играет далеко не самую важную роль.

Источник

Журнал «Все о Космосе»

Солнечная батарея (панель)

Солнечная батарея на МКС

Солнечная батарея — несколько объединённых фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток, в отличие от солнечных коллекторов, производящих нагрев материала-теплоносителя.

Различные устройства, позволяющие преобразовывать солнечное излучение в тепловую и электрическую энергию, являются объектом исследования гелиоэнергетики (от гелиос греч. Ήλιος , Helios — Солнце). Производство фотоэлектрических элементов и солнечных коллекторов развивается в разных направлениях. Солнечные батареи бывают различного размера: от встраиваемых в микрокалькуляторы до занимающих крыши автомобилей и зданий.

История

Первые прототипы солнечных батарей были созданы итальянским фотохимиком армянского происхождения Джакомо Луиджи Чамичаном.

25 апреля 1954 года, специалисты компании Bell Laboratories заявили о создании первых солнечных батарей на основе кремния для получения электрического тока. Это открытие было произведено тремя сотрудниками компании — Кельвином Соулзером Фуллером (Calvin Souther Fuller), Дэрилом Чапин (Daryl Chapin) и Геральдом Пирсоном (Gerald Pearson). Уже через 4 года, 17 марта 1958 году, в США был запущен первый спутник с солнечными батареями — Vanguard 1. Спустя всего пару месяцев, 15 мая 1958 года в СССР был запущен Спутник-3, также с использованием солнечных батарей.

Использование в космосе

Солнечные батареи — один из основных способов получения электрической энергии на космических аппаратах: они работают долгое время без расхода каких-либо материалов, и в то же время являются экологически безопасными, в отличие от ядерных и радиоизотопных источников энергии.

Однако при полётах на большом удалении от Солнца (за орбитой Марса) их использование становится проблематичным, так как поток солнечной энергии обратно пропорционален квадрату расстояния от Солнца. При полётах же к Венере и Меркурию, напротив, мощность солнечных батарей значительно возрастает (в районе Венеры в 2 раза, в районе Меркурия в 6 раз).

Эффективность фотоэлементов и модулей

Мощность потока солнечного излучения на входе в атмосферу Земли (AM0), составляет около 1366 ватт на квадратный метр (см. также AM1, AM1.5, AM1.5G, AM1.5D ). В то же время, удельная мощность солнечного излучения в Европе в очень облачную погоду даже днём может быть менее 100 Вт/м². С помощью распространённых промышленно производимых солнечных батарей можно преобразовать эту энергию в электричество с эффективностью 9—24 %. При этом цена батареи составит около 1—3 долларов США за Ватт номинальной мощности. При промышленной генерации электричества с помощью фотоэлементов цена за кВт·ч составит 0,25 долл. По мнению Европейской Ассоциации Фотовольтаики (EPIA), к 2020 году стоимость электроэнергии, вырабатываемой «солнечными» системами, снизится до уровня менее 0,10 € за кВт·ч для промышленных установок и менее 0,15 € за кВт·ч для установок в жилых зданиях.

В 2009 году компания Spectrolab (дочерняя фирма Boeing) продемонстрировала солнечный элемент с эффективностью 41,6 %. В январе 2011 года ожидалось поступление на рынок солнечных элементов этой фирмы с эффективностью 39 %. В 2011 году калифорнийская компания Solar Junction добилась КПД фотоэлемента размером 5,5×5,5 мм в 43,5 %, что на 1,2 % превысило предыдущий рекорд.

В 2012 году компания Morgan Solar создала систему Sun Simba из полиметилметакрилата (оргстекла), германия и арсенида галлия, объединив концентратор с панелью, на которой установлен фотоэлемент. КПД системы при неподвижном положении панели составил 26—30 % (в зависимости от времени года и угла, под которым находится Солнце), в два раза превысив практический КПД фотоэлементов на основе кристаллического кремния.

В 2013 году компания Sharp создала трёхслойный фотоэлемент размером 4х4 мм на индиево-галлий-арсенидной основе с КПД 44,4 %, а группа специалистов из Института систем солнечной энергии общества Фраунгофера, компаний Soitec, CEA-Leti и Берлинского центра имени Гельмгольца создали фотоэлемент, использующий линзы Френеля с КПД 44,7 %, превзойдя своё собственное достижение в 43,6 %. В 2014 году Институт солнечных энергосистем Фраунгофер создали солнечные батареи, в которых благодаря фокусировке линзой света на очень маленьком фотоэлементе КПД составил 46%.

В 2014 году испанские учёные разработали фотоэлектрический элемент из кремния, способный преобразовывать в электричество инфракрасное излучение Солнца.

Перспективным направлением является создание фотоэлементов на основе наноантенн, работающих на непосредственном выпрямлении токов, наводимых в антенне малых размеров (порядка 200-300 нм) светом (т. е. электромагнитным излучением частоты порядка 500 ТГц). Наноантенны не требуют дорогого сырья для производства и имеют потенциальный КПД до 85%.

Максимальные значения эффективности фотоэлементов и модулей,
достигнутые в лабораторных условиях

Тип Коэффициент фотоэлектрического преобразования, %
Кремниевые
Si (кристаллический) 24,7
Si (поликристаллический) 20,3
Si (тонкопленочная передача) 16,6
Si (тонкопленочный субмодуль) 10,4
III-V
GaAs (кристаллический) 25,1
GaAs (тонкопленочный) 24,5
GaAs (поликристаллический) 18,2
InP (кристаллический) 21,9
Тонкие пленки халькогенидов
CIGS (фотоэлемент) 19,9
CIGS (субмодуль) 16,6
CdTe (фотоэлемент) 16,5
Аморфный/Нанокристаллический кремний
Si (аморфный) 9,5
Si (нанокристаллический) 10,1
Фотохимические
На базе органических красителей 10,4
На базе органических красителей (субмодуль) 7,9
Органические
Органический полимер 5,15
Многослойные
GaInP/GaAs/Ge 32,0
GaInP/GaAs 30,3
GaAs/CIS (тонкопленочный) 25,8
a-Si/mc-Si (тонкий субмодуль) 11,7

Факторы, влияющие на эффективность фотоэлементов

Особенности строения фотоэлементов вызывают снижение производительности панелей с ростом температуры.

Частичное затемнение панели вызывает падение выходного напряжения за счёт потерь в неосвещённом элементе, который начинает выступать в роли паразитной нагрузки. От данного недостатка можно избавиться путём установки байпаса на каждый фотоэлемент панели.

Из рабочей характеристики фотоэлектрической панели видно, что для достижения наибольшей эффективности требуется правильный подбор сопротивления нагрузки. Для этого фотоэлектрические панели не подключают напрямую к нагрузке, а используют контроллер управления фотоэлектрическими системами, обеспечивающий оптимальный режим работы панелей.

Производство

Очень часто одиночные фотоэлементы не вырабатывают достаточной мощности. Поэтому определенное количество фотоэлементов соединяется в так называемые фотоэлектрические солнечные модули и между стеклянными пластинами монтируется укрепление. Эта сборка может быть полностью автоматизирована.

Источник

Солнечные батареи на космических кораблях — Solar panels on spacecraft

Космические аппараты, работающие во внутренней части Солнечной системы, обычно используют фотоэлектрические солнечные панели для получения электричества из солнечного света . За пределами орбиты Юпитера солнечное излучение слишком слабое, чтобы производить достаточную мощность в рамках нынешних солнечных технологий и ограничений массы космических аппаратов, поэтому вместо этого в качестве источника энергии используются радиоизотопные термоэлектрические генераторы (РИТЭГи).

СОДЕРЖАНИЕ

История

Первым космическим кораблем, в котором использовались солнечные батареи, был спутник Vanguard 1 , запущенный США в 1958 году. Это произошло во многом благодаря влиянию доктора Ханса Циглера , которого можно считать отцом солнечной энергии космических кораблей. Спутник питался от кремниевых солнечных элементов с эффективностью преобразования ≈10%.

Использует

Солнечные панели на космическом корабле обеспечивают питание для двух основных целей:

  • Питание для запуска датчиков, активного нагрева, охлаждения и телеметрии.
  • Электропитание для силовой установки космического корабля с электроприводом , иногда называемой электрической движительной установкой или солнечно-электрической движительной установкой.

Для обоих применений ключевым показателем качества солнечных панелей является удельная мощность (генерируемые ватты, деленные на массу солнечной батареи ), которая указывает на относительной основе, сколько мощности будет генерировать одна батарея при заданной стартовой массе по сравнению с другой. Другой ключевой показатель — это эффективность упаковки в сложенном состоянии (выработанная мощность в развернутом состоянии, разделенная на сложенный объем), которая показывает, насколько легко массив поместится в ракету-носитель. Еще один ключевой показатель — это стоимость (в долларах за ватт).

Для увеличения удельной мощности типичные солнечные панели на космических кораблях используют плотно упакованные прямоугольники солнечных элементов, которые покрывают почти 100% видимой для Солнца области солнечных панелей, а не круги солнечных пластин, которые, даже будучи плотно упакованными, покрывают около 90% видимой Солнцу площади типичных солнечных панелей на Земле. Однако некоторые солнечные панели на космических кораблях имеют солнечные элементы, которые покрывают только 30% видимой для Солнца области.

Выполнение

Солнечные панели должны иметь большую площадь поверхности, которая может быть направлена ​​к Солнцу при движении космического корабля. Более открытая поверхность означает, что больше электричества может быть преобразовано из световой энергии Солнца. Поскольку космический корабль должен быть небольшим, это ограничивает количество производимой энергии.

Все электрические цепи выделяют отходящее тепло ; Кроме того, солнечные батареи действуют как оптические и тепловые, а также как электрические коллекторы. От их поверхностей должно исходить тепло. Космические корабли большой мощности могут иметь солнечные батареи, которые конкурируют с самой активной полезной нагрузкой за рассеивание тепла. Самая внутренняя панель массивов может быть «пустой», чтобы уменьшить перекрытие видов в пространстве. К таким космическим аппаратам относятся спутники связи с более высокой мощностью (например, TDRS более позднего поколения ) и Venus Express , но не мощные, но более близкие к Солнцу.

Космический корабль построен так, что солнечные панели можно поворачивать во время движения космического корабля. Таким образом, они всегда могут оставаться на прямом пути световых лучей, независимо от того, как направлен космический корабль. Космические корабли обычно проектируются с солнечными панелями, которые всегда можно направить на Солнце, даже когда остальная часть космического корабля движется, так же, как турель танка может быть нацелена независимо от того, куда движется танк. Механизм слежения часто включается в солнечные батареи, чтобы держать их направленными к солнцу.

Иногда операторы спутников целенаправленно ориентируют солнечные панели «не в точку» или не в прямом направлении от Солнца. Это происходит, если батареи полностью заряжены и количество необходимой электроэнергии меньше, чем количество произведенной электроэнергии; смещение также иногда используется на Международной космической станции для уменьшения сопротивления орбиты .

Проблемы ионизирующего излучения и смягчение его последствий

Космос содержит различные уровни электромагнитного излучения, а также ионизирующего излучения. Есть 4 источника излучения: радиационные пояса Земли (также называемые поясами Ван Аллена), галактические космические лучи (ГКЛ), солнечный ветер и солнечные вспышки . Пояса Ван Аллена и солнечный ветер содержат в основном протоны и электроны, в то время как GCR — это в основном протоны очень высоких энергий, альфа-частицы и более тяжелые ионы. Солнечные панели со временем будут испытывать снижение эффективности в результате этих типов излучения, но скорость ухудшения будет сильно зависеть от технологии солнечных элементов и от местоположения космического корабля. С панельными покрытиями из боросиликатного стекла потеря эффективности может составлять от 5 до 10% в год. Другие стеклянные покрытия, такие как плавленый кварц и свинцовые стекла, могут снизить эту потерю эффективности до менее 1% в год. Скорость разложения зависит от спектра дифференциального потока и общей ионизирующей дозы.

Типы обычно используемых солнечных элементов

Вплоть до начала 1990-х годов в солнечных батареях, используемых в космосе, в основном использовались солнечные элементы из кристаллического кремния . С начала 1990-х годов солнечные элементы на основе арсенида галлия стали более предпочтительными по сравнению с кремнием, потому что они имеют более высокий КПД и разлагаются медленнее, чем кремний, в среде космического излучения. Самые эффективные солнечные элементы, производимые в настоящее время, — это многопереходные фотоэлектрические элементы . В них используется комбинация нескольких слоев фосфида индия-галлия, арсенида галлия и германия для получения большего количества энергии из солнечного спектра. Передовые многопереходные элементы способны превышать 39,2% при неконцентрированном освещении AM1,5G и 47,1% при концентрированном освещении AM1,5G.

Космические аппараты, использовавшие солнечную энергию

На сегодняшний день солнечная энергия, кроме двигательной, применима для космических аппаратов, работающих не дальше от Солнца, чем орбита Юпитера . Например, Juno , Magellan , Mars Global Surveyor и Mars Observer использовали солнечную энергию, как и орбитальный космический телескоп Хаббла . Rosetta космический зонд , запущенный 2 марта 2004, использовал свои 64 квадратных метров (690 кв.м) , солнечных панелей, насколько орбиты Юпитера (5,25 а.е. ); ранее самым дальним использованием был космический корабль » Звездная пыль» на высоте 2 астрономических единиц. Солнечная энергия для движения также использовалась в европейской лунной миссии SMART-1 с двигателем на эффекте Холла .

Миссия Juno , запущенная в 2011 году, является первой миссией к Юпитеру (прибыла к Юпитеру 4 июля 2016 года) с использованием солнечных батарей вместо традиционных РИТЭГов, которые использовались в предыдущих миссиях за пределами Солнечной системы, что делает его самым дальним космическим кораблем для использования. солнечные панели на сегодняшний день. Он имеет 72 квадратных метра (780 квадратных футов) панелей.

Еще один интересный космический аппарат — Dawn, который вышел на орбиту около 4 Весты в 2011 году. Он использовал ионные двигатели, чтобы добраться до Цереры .

Возможности космических аппаратов на солнечных батареях за пределами Юпитера были изучены.

Международная космическая станция также использует солнечные батареи для питания всего на станции. 262 400 солнечных элементов покрывают около 27 000 квадратных футов (2 500 м 2 ) пространства. Четыре комплекта солнечных батарей питают станцию, а четвертый комплект батарей был установлен в марте 2009 года. Эти солнечные батареи могут вырабатывать 240 киловатт электроэнергии. Это составляет 120 киловатт средней мощности системы, включая 50% времени нахождения МКС в тени Земли.

Будущее использование

Для будущих миссий желательно уменьшить массу солнечных батарей и увеличить мощность, вырабатываемую на единицу площади. Это уменьшит общую массу космического корабля и может сделать работу космических кораблей на солнечной энергии возможной на больших расстояниях от Солнца. Масса солнечной батареи может быть уменьшена с помощью тонкопленочных фотоэлементов, гибких подложек и композитных опорных структур. Эффективность солнечной батареи можно повысить за счет использования новых материалов фотоэлектрических элементов и солнечных концентраторов, которые усиливают падающий солнечный свет. Фотовольтаические солнечные батареи-концентраторы для основного питания космических кораблей — это устройства, которые усиливают солнечный свет на фотовольтаике. В этой конструкции используется плоская линза, называемая линзой Френеля , которая захватывает большую площадь солнечного света и концентрирует его на меньшем участке, позволяя использовать меньшую площадь солнечного элемента.

Солнечные концентраторы помещают по одной из этих линз на каждый солнечный элемент. Это фокусирует свет из большой области концентратора в меньшую область ячейки. Это позволяет уменьшить количество дорогих солнечных элементов за счет концентрации. Концентраторы работают лучше всего, когда есть единственный источник света и концентратор может быть направлен прямо на него. Это идеально подходит для космоса, где Солнце — единственный источник света. Солнечные элементы — самая дорогая часть солнечных батарей, а массивы часто — очень дорогая часть космического корабля. Эта технология может позволить значительно снизить затраты за счет использования меньшего количества материала.

Галерея

Авангард 1 , первый спутник на солнечной энергии

Источник

Оцените статью