- Как работает электрический генератор
- Электрогенератор
- Принцип работы первого генератора
- Как работает электрогенератор?
- Современный водяной двигатель
- Электричество из воды
- Гидроэлектростанции-гиганты
- Как работает электрогенератор
- Все об электрогенераторах
- История создания
- Устройство и принцип работы
- По автономности
- По количеству фаз
- По режиму работы
- По области применения
- Классификация бытовых приборов
- Бензиновые
- Дизельные
- Производители
- Как выбрать?
Как работает электрический генератор
Функция любого электрического генератора — вырабатывать электрический ток. Но на самом деле генератор ничего не производит, а лишь преобразует один вид энергии — в другой (как это и свойственно всем энергетическим процессам в природе). Чаще всего, произнося словосочетание «электрический генератор», имеют ввиду машину, преобразующую механическую энергию — в электрическую.
Механическая энергия может быть получена от расширяющегося под давлением газа или пара, от падающей воды или даже вручную. В любом случае для получения от генератора электрической энергии, ему необходимо сначала передать эту энергию в приемлемой форме, чаще всего в механической.
— А откуда у вас электричество?
— Два гигантских хомяка крутят колёса в секретном бункере.
Остаться в живых (Lost)
Генераторы, работающие посредством механического привода, — доминирующий вид генераторов в современном мире. Такие генераторы работают на атомных и гидроэлектростанциях, в автомобилях, в дизельных и бензиновых генераторах, на ветряках, в ручных динамо-машинах и т. д. Пар, бензин, ветер — служат источниками механической энергии, вращающей ротор генератора.
Пример работы простого электрогенератора:
На роторе генератора закреплена обмотка намагничивания или постоянные магниты. В последние годы широкое распространение получают генераторы с неодимовыми магнитами на роторе, так как современные неодимовые магниты не уступают по своим характеристикам мощной обмотке намагничивания.
Принцип выработки электрической энергии в генераторе основан на явлении электромагнитной индукции, которое заключается в том, что изменяющийся в пространстве магнитный поток индуцирует вокруг этого пространства электрическое поле.
И если в область где присутствует это индуцированное электрическое поле поместить проводник, то в нем наведется (будет индуцирована) ЭДС — электродвижущая сила, и между концами проводника можно будет наблюдать (измерить, использовать для питания нагрузки) соответствующее напряжение.
Изменяющийся магнитный поток получается в генераторе при помощи движущихся вместе с ротором магнитов или полюсных наконечников, намагничиваемых специальными обмотками — обмотками намагничивания. Обмотки намагничивания обычно получают питание через щетки и контактные кольца.
Применение генератора для электрификации модели железной дороги:
Провода, в которых наводится ЭДС (электрическое напряжение) в генераторе, представляют собой обмотку статора, расположенную, как правило, в магнитопроводе, закрепленном на неподвижной части электрической машины. Эта обмотка у генераторов разного типа может быть выполнена различным образом.
В трехфазных генераторах переменного тока приняты обмотки статора, изготовленные по трехфазной схеме, — три части такой трехфазной обмотки могут быть соединены «звездой» или «треугольником».
Соединение звездой позволяет получить от генератора напряжение большей величины, чем при соединении треугольником. Разница в напряжениях составит корень из 3 раз (около 1,73). Чем больше напряжение — тем меньше максимальный ток, который можно получить от данного генератора на нагрузке.
Работа электрического генератора на электростанции:
Номинальная мощность генератора зависит от нескольких факторов, которые определяют его номинальные ток и напряжение. Напряжение на выходных клеммах генератора зависит от длины обмотки (провода) статора, от скорости вращения ротора и от индукции магнитного поля на его полюсах. Чем эти параметры больше — тем большее напряжение получается с генератора на холостом ходу и под нагрузкой.
Портативный генератор (мини-электростанция) для автономного электроснабжения:
Максимальный ток, который можно получить от генератора, теоретически ограничен его током короткого замыкания. Практически при номинальных оборотах он зависит от толщины провода обмотки статора и от общего магнитного потока ротора.
Если магнитного потока не достаточно, в некоторых случаях прибегают к увеличению оборотов. Но тогда генератор обязательно должен быть оснащен автоматическим регулятором напряжения, как это реализовано в автомобильных генераторах, которые способны выдавать приемлемый для зарядки аккумулятора ток в широком диапазоне оборотов.
Источник
Электрогенератор
Электрический генератор (от латинского — «производитель») — устройство, вырабатывающее электрическую энергию, то есть преобразующее механическую энергию в электрический ток.
Благодаря изобретению генератора уже в середине XIX в. у промышленности и населения появилась реальная возможность производства и использования электричества, например, для работы станков или освещения домов и улиц. Кстати, электрические двигатели постоянного тока по своей конструкции практически полностью аналогичны генераторам. Более того, если вращать якорь электромотора постоянного тока (например, от электрической машинки или другой игрушки), он, как и генератор, начнет вырабатывать ток.
Принцип работы первого генератора
В 1831 г. английский ученый Майкл Фарадей открыл электромагнитную индукцию. Сущность этого открытия заключалась в том, что если вращать проводник между полюсами магнита, то в нем возникнет электромагнитное поле. Такое поле возбуждает движение электронов, и по проводнику начинает течь электрический ток. Благодаря этому открытию стало возможным создание электрического генератора и электрического двигателя.
Как работает электрогенератор?
Работа электрогенератора состоит во взаимодействии статора, ротора и контактных колец. Статор во включенном генераторе остается неподвижным. Расстояние между статором и ротором составляет всего лишь несколько миллиметров, поэтому между ними возникает очень сильное магнитное поле, и в обмотке ротора появляется электрический ток большой мощности. Обмотка статора при подаче напряжения от внешнего источника превращается в электромагнит.
Ротор соединен с валом механического устройства (двигатель внутреннего сгорания, ветряной или водяной двигатель и т. п.) и вращается во время работы генератора. Обмотка ротора в момент своего движения постоянно пересекает магнитное поле, создаваемое обмотками статора, и в ней образуется электрический ток.
Такая конструкция позволила избавиться от больших и тяжелых постоянных магнитов. Контактные кольца предназначены для съема электрической энергии с обмоток ротора. Они представляют собой барабан со множеством медных пластин, к которым подключены обмотки ротора. Снаружи с ними соприкасаются графитовые щетки, к которым с помощью проводов подключен потребитель электрической энергии.
Современный водяной двигатель
В современных водяных двигателях колесо с лопастями заменено более скоростной водяной турбиной (образовано от слова «турбо» — «вихрь»). Чаще всего она имеет спиральный кожух, по форме напоминающий раковину улитки. Вода поступает в широкий конец кожуха. Так как «коридор», по которому она течет, все время сужается, ее напор увеличивается.
Затем усиленный поток воды поступает на вогнутые лопатки турбины, которая расположена в центре «улитки», и вращает ее. Так энергия потока воды преобразуется в механическую работу.
Электричество из воды
В наши дни электричество производят на гидроэлектростанциях, которые используют энергию движущейся воды.
Гидроэлектростанция состоит из двух основных частей: энергоблока и плотины (или дамбы), накапливающей воду. В энергоблоке расположены генераторы, вырабатывающие электрический ток. Их роторы вращаются благодаря водяным турбинам. Так энергия потока воды преобразуется в электрическую.
Гидроэлектростанции-гиганты
Одна из самых мощных в мире гидроэлектростанций была построена в Китае на реке Янцзы и получила название «Три ущелья». Ее бетонная плотина имеет длину 2309 м и высоту 185 м. Общая мощность электрогенераторов станции составляет почти 23 МВт (1 МВт = 1 млн Вт). За год они вырабатывают около 100 млрд кВт/ч электроэнергии.
Лишь немногим меньше электроэнергии вырабатывает гидроэлектростанция «Итайпу», расположенная на реке Парана (на границе Бразилии и Парагвая), которая имеет самую большую плотину. Высота этого гигантского сооружения достигает 196 м, а длина — 7235 м.
Источник
Как работает электрогенератор
Электрогенератор – один из составляющих элементов автономной электростанции, а также многих других. По сути, он и является самым важным элементом, без которого невозможна выработка электрической энергии. Электрогенератор преобразует вращательную механическую энергию в электрическую. Принцип его действия основан на так называемом явлении самоиндукции, когда в проводнике (катушке), двигающемся в силовых линиях магнитного поля возникает электродвижущая сила (ЭДС), которую можно (для лучшего понимания вопроса) назвать электрическим напряжением (хотя это и не одно и то же).
Составными частями электрического генератора являются магнитная система (в основном используются электромагниты) и система проводников (катушек). Первая создает магнитное поле, а вторая, вращаясь в нем, преобразует его в электрическое. Дополнительно в генераторе есть еще и система отвода напряжения (коллектор и щетки, соединение катушек определенным образом). Она собственно связывает генератор с потребителями электрического тока.
Получить электроэнергию можно и самому, проведя самый простейший опыт. Для этого нужно взять два разнополюсных магнита или повернуть два магнита разными полюсами друг к другу, и поместить между ними металлический проводник в виде рамки. К ее концам подключить небольшую (слабомощную) электрическую лампочку. Если рамку начать вращать в ту или другую сторону, лампочка начнет светится, то есть на концах рамки появилось электрическое напряжение, а через ее спираль потек электрический ток. Точно также происходит в электрогенераторе, стой лишь разницей, что в электрогенераторе более сложная система электромагнитов и намного сложнее катушка из проводников, обычно медных.
Электрогенераторы различаются как по типу привода, так и по виду выходного напряжения. По типу привода, который приводит его в движение:
- Турбогенератор – приводится в движение при помощи паровой турбины или газотурбинного двигателя. В основном используются на больших (промышленных) электростанциях.
- Гидрогенератор – приводится в движение при помощи гидравлической турбины. Применяется также на больших электростанциях, работающих посредством движения речной и морской воды.
- Ветрогенератор – приводится в движение при помощи энергии ветра. Используется как в маленьких (частных) ветряных электростанциях, так и в больших промышленных.
- Дизель-генератор и бензо-генератор приводятся в движение соответственно дизельным и бензиновым двигателем.
По виду выходного электрического тока:
- Генераторы постоянного тока – на выходе получаем постоянный ток.
- Генераторы переменного тока. Бывают однофазные и трехфазные, с однофазным и трехфазным выходным переменным током соответственно.
Различные типы генераторов имеют свои конструктивные особенности и практически несовместимые узлы. Объединяет их лишь общий принцип создания электромагнитного поля путем взаимного вращения одной системы катушек относительно другой либо относительно постоянных магнитов. Ввиду этих особенностей ремонт генераторов или их отдельных компонентов под силу только квалифицированным специалистам.
Источник
Все об электрогенераторах
Знать все об электрогенераторах нужно не только инженерам, организаторам производства и различным менеджерам, как обычно считают. Знание принципа работы генератора электрического тока — базовое общекультурное знание современного мира. Представление о видах генераторов, о том, из чего они состоят, как выбрать устройство, позволяет существенно улучшить собственную жизнь и гарантировать комфорт даже при внезапном отключении электропитания.
История создания
Точно сказать, какие специалисты изобрели генератор электричества, нельзя — работу над ним вели многие инженеры и электротехники в течение десятков лет. Работа над такой техникой продолжается даже и в XXI веке, когда, казалось бы, ничего существенного прибавить уже нельзя. Решающим шагом к созданию генератора стало открытие взаимодействия электрического поля и магнитной стрелки в 1820 году. Постепенно удалось обнаружить, что электрический ток получается только в подвижном магнитном поле либо при движении в нем проводника. Честь такого открытия делят Аньош Йедлик (Австрия, 1827) и Майкл Фарадей (Англия, 1831).
Хотя первым был венгерский ученый, куда большую известность получили усилия его британского коллеги. Именно он детально и всесторонне исследовал электромагнитную индукцию, а не просто постарался создать конкретный механизм. Кроме того, Йедлик от прототипов смог перейти к полноценной динамо-машине лишь в 1850-е годы. А вот Майкл Фарадей создал генератор электроэнергии (хотя еще несовершенный) еще в 1831-м. Динамо-машины оказались исторически первым типом, но из-за размеров и сложности коммутации сошли со сцены.
Год изобретения первой электрической машины в России — 1833-й. Эммануил Ленц обнаружил тогда же обратимость систем — один аппарат может использоваться и для генерации, и в качестве электромотора.
Но архаичное крепостное хозяйство не позволило воспользоваться перспективными разработками, и вскоре приоритет безвозвратно ушел к промышленно развитым государствам. Вплоть до 1851 года все генераторы делались только с постоянными магнитами, в последующие 16 лет повысить мощность удавалось за счет простых электромагнитов. В 1866-1867 годах сразу несколько разработчиков представили электрические машины на самовозбуждающихся магнитах.
Генератор бельгийско-французского изобретателя Зеноба Грамма, построенный в 1870 году, впервые начал применяться широко в промышленных целях. Как только появился дизельный двигатель, неустановленный разработчик придумал, как использовать его в качестве генераторного привода. Уже в 1920-е годы дизель-генераторы начали активно применяться в промышленности. Исследования физиков в 1940-е годы позволили создать магнитогидродинамические генераторы. Но такие системы могут применяться исключительно на крупных электростанциях, перспективы их бытового применения отсутствуют.
Устройство и принцип работы
Любой электрогенератор превращает механический импульс в электрический ток. Его получение происходит за счет кручения катушки из проволоки, помещаемой в магнитное поле. Катушка делится на две главные части: жестко зафиксированный магнит и рамка из проволоки. Оба наконечника катушки связываются механически за счет контактного кольца, скользящего по угольной щетке. Эта щетка проводит электрический ток.
Принцип действия генератора подразумевает также то, что импульс, который вырабатывает вращающая часть, поступает на кольцо внутреннего контакта. Происходит это точно в момент прохождения части рамки около северного края магнита. Источник переменного тока работает обычно по принципу так называемой сильной выработки тока.
В нем есть всего один магнит, однако, он движется вокруг нескольких обмоток. Стоит учесть, что автомобильный генератор устроен несколько иначе.
Действовать он начинает при запуске системы зажигания. В этот момент ток через контактные кольца движется на щеточный узел и на систему возбуждения. Там он вырабатывает магнитное поле. Ротор, присоединенный к коленвалу, вырабатывает электромагнитные колебания. Переменный наведенный ток образуется на выводе перемотки. Частота кручения самовозбуждающегося генератора растет вплоть до определенного уровня, а после этого срабатывает выпрямитель.
Хотя основной принцип выработки тока состоит во взаимодействии магнитного поля, ротора и статора, вращать движущуюся часть могут различные источники механической энергии. Ими могут быть:
моторы внутреннего сгорания.
Синхронный тип генератора отличается совпадением частот кручения статоров и роторов. В качестве ротора применяется постоянный магнит. Когда устройство запускают, ротор начинает вырабатывать слабое поле. Как только растут обороты, начинает вырабатываться большая электрическая сила. Импульс проходит через регулятор напряжения и выдается в электрическую сеть.
Синхронная схема позволяет стабилизировать параметры испускаемого тока. Однако велика вероятность электрических перегрузок. Кроме того, щеточный узел приходится обслуживать, и это сразу увеличивает расходы потребителей.
Асинхронные модели непрерывно работают в тормозящем режиме. Ротор крутится с опережением, а его ориентация совпадает с ориентацией магнитного поля, создаваемого статором. Роторы могут относиться к фазному либо короткозамкнутому варианту.
Магнитное поле в асинхронных устройствах не подлежит регулировке. Потому частота и ампераж тока определяются непосредственно числом витков аппарата. В последние десятилетия заметную роль играют электрохимические генераторы, которые вырабатывают ток на основе водорода. Их пытаются использовать в автомобилях, однако, пока вытеснить ДВС не получается. Еще один вариант генератора — солнечная батарея работает за счет фотоэффекта.
По автономности
Предельно автономный тип — это ручные электростанции. В них механическое движение получается за счет мускульной силы оператора. Конечно, рассчитывать на высокую производительность и длительную работу не приходится. Зато можно уверенно получать ток в любой ситуации, когда нельзя использовать ни топливо, ни энергию ветра или воды. Потому подобные генераторы могут входить в аварийные комплекты на воздушных судах, использоваться в экстренных случаях экспедициями, военными и так далее. Условно автономные электромагнитные аппараты — на бензиновом приводе.
По количеству фаз
Встречаются однофазные и трехфазные устройства. В домах и квартирах трехфазное электропитание требуется редко. Исключение составляют старые двигатели, ТЭНы для сауны и тому подобная аппаратура.
Подключение однофазных потребителей к трехфазному генератору должно происходить по правилу равномерного распределения.
Простое эмпирическое правило гласит: если сеть потребляет 20 кВт и менее, особого смысла в трех фазах нет.
По режиму работы
Основные применяемые аппараты призваны действовать беспрерывно. Обычно они работают на дизельном горючем, хотя есть и исключения. Такая техника может обеспечить круглосуточное электропитание, и именно ее ставят на крупных электростанциях и ТЭЦ. Резервные модели генераторов рассчитаны на экстренные случаи (когда внезапно отключается электроснабжение). Работа тоже иногда проходит без перерывов, но всего лишь в течение нескольких часов.
По области применения
Генераторы бытового назначения представлены в широком ассортименте. Почти все они выдают однофазный ток. Нормальные показатели — 220 В, 50 Гц. Самые мощные бытовые устройства применяют даже для сварки, а также для питания небольших мастерских и автосервисов.
Важно: возможность применения для сварки должна быть оговорена в документации — в противном случае риск очень велик.
Для производственных целей нужны мощные стационарные электрогенераторы. Они же используются для:
солидных коттеджных поселков;
Классификация бытовых приборов
Бензиновые
Системы с приводом от ветра или текущей воды бывают только на более или менее крупных электростанциях. Использовать их в полевых (походных) условиях и даже просто дома не так-то просто. Особенно это относится к гидрогенераторам. Что касается тепловых электростанций для частного использования, то они почти всегда работают на бензине и выдают ограниченную мощность, устройства мощнее 20 кВт можно встретить нечасто. Обычно они используют бензин Аи-92, применение Аи-76 и Аи-95 возможно лишь эпизодически, да и то не рекомендуется.
Дизельные
Работающие на дизельном топливе установки выдают иногда до 3 МВт тока. Они обеспечат энергией даже крупный дачный поселок с гаражами и аналогичной инфраструктурой.
Дизель-генераторы выпускаются в мобильном либо в неподвижном исполнении. Ассортимент такой продукции весьма велик и заведомо закрывает любые потребности.
Даже относительно слабые модели подходят для снабжения током сварочных аппаратов.
Производители
Современные электрогенераторы производства России уверенно бросают вызов иностранной продукции. Наибольшую популярность завоевали товары марок:
Ассортимент российских поставщиков включает и бытовые версии мощностью 1000-2000 Вт, и серьезные полупромышленные образцы с мощностью до 5000 Вт. Наконец, присутствуют даже существенно более мощные модели, которые выручат строителей, организаторов производства. Ряд генераторов, выпускаемых в РФ, оснащается продвинутой контрольной и управляющей электроникой, следящей за техническими параметрами. Однако есть и более простые версии — которые куда более стабильны в сложных условиях. Наконец, продукция российских фирм точно будет доступна для потребителей.
Бытовой сегмент представлен, к примеру, моделью ЭГ-87220. Она имеет фирменную гарантию на 14 месяцев. Топливный резервуар объемом 15 л вполне достаточен в большинстве случаев, но автозапуск не предусмотрен.
Наибольшая мощность достигает 2200 Вт. Рабочее напряжение — ожидаемые 220 В.
Отличные генераторы поставляет и французская фирма SDMO. Она вообще является одним из мировых лидеров по части выпуска электрогенераторов различного типа и мощности. Без труда можно подобрать электростанцию SDMO на бензине, позволяющую решать практически любую мыслимую задачу. Они отличаются привлекательной производительностью. В ассортименте французского концерна есть модели со специальными рамами, гасящими вибрацию. Предусматривается оснащение отличными электронными компонентами.
Внимание на себя обращает модель K10M. Она выдает напряжение 230 В и управляется с пульта. Предусмотрены силовой защитный автомат, возможность работы при – 30 градусах. На раме поставлена антивибрационная система. Есть также зарядный генератор на 12 В.
Конкурирующая компания Caiman вошла на российский рынок относительно недавно. Однако она уже сумела продемонстрировать достоинства своей продукции максимально убедительно. Ее модели конструируются с расчетом на минимальную шумность, и их можно спокойно ставить даже внутри дома. Все генераторы этого бренда отвечают наивысшим экологическим стандартам. Разумеется, ассортимент Caiman включает устройства различной мощности и габаритов.
Эта марка может похвастать моделью Expert 3010X. Она имеет продвинутую опцию воздушного охлаждения. Распределительный вал использует усовершенствованный цепной привод.
Фильтр гарантирует запуск генератора даже в сильно запыленных местах. Автоматика проследит за тем, чтобы запуск без масла был невозможен. Еще стоит отметить:
пару защищенных от влаги розеток;
гарантию автономной работы до 210 минут;
продуманную охладительную аппаратуру;
отличную бесщеточную систему, не требующую изощренного обслуживания.
Очень хорошие позиции на рынке занимает немецкий производитель Endress. В самой Германии, что уже говорит о многом, ее устройства крайне популярны. Фирма активно применяет продвинутые комплексные решения. Как и у предыдущих поставщиков, ассортимент включает весь набор вариантов для электроснабжения. Мощность основной части моделей варьируется от 1500 до 9000 Вт. Почти все аппараты Endress способны выдавать ток напряжением 220 и 380 В.
Хороший образец — ESE 404 YS Diesel. Эту версию ценят за надежность и небольшой расход горючего. Мощность устройства достигает 3,9 кВА. Номинал напряжения однофазного генератора равен 230 В. Электротехническая защита выполнена на уровне IP23.
Говоря про немецких поставщиков, глупо было бы игнорировать еще один популярный бренд — Fubag. Его электрогенераторы по качеству не уступают как минимум более известному сварочному оборудованию. Специалисты Fubag заботятся не только о технических характеристиках, но и об оригинальном дизайне, позволяющем упростить обслуживание. Генераторы этой марки формально относятся к профессиональной категории. Однако их не менее успешно применяют и в частном секторе.
Открытая однофазная электростанция DS 16 A ES выдает до 13,6 кВА тока, используя бак объемом 51 л. Предусмотрен предпусковой прогрев воздуха.
Конструкторы позаботились о защите от перегрузок, уровень электротехнической стойкости — IP23. Четырехцилиндровая установка обеспечивает силу тока 54 А. При загрузке 75% устройство отработает до 10 часов.
Российские потребители также давно оценили преимущества электрогенераторов бренда «Ресанта». Их хвалят за:
отличное соотношение массы и мощности;
стабильность выходного напряжения.
В ассортименте выделяется модель БГ 4000 Р, работающая на бензине. Номинал мощности — 3 кВт, марка топлива — Аи-92. Синхронная щеточная система работает безупречно, информацию до пользователя доводит дисплей. Свечной ключ, вороток входят в комплект. Фактически производство ведется в Китае.
Среди китайских фирм выгодно выделяется бренд ELITECH. В нашей стране он известен с 2008 года. Такие генераторы не только качественны, но и неприхотливы, отличаются универсальностью. В продукции ELITECH применяются новейшие технологии, и поэтому компании удалось оттеснить многих бывших лидеров рынка. Бензогенераторы этой компании отличаются комбинированным стартом, могут быть выполнены в стационарном или мобильном виде.
Пример простого бытового генератора — БЭС 950 Р. При емкости бака 4,4 л он обеспечивает силу тока 2,8 А. Старт происходит в ручном режиме. Автоматика следит за уровнем масла и отключает устройство по мере необходимости. Верхнеклапанный двухтактный мотор имеет единственный цилиндр, остужаемый воздухом. Громкость звука достигает 56 дБА. Норвежские электрогенераторы особого упоминания не заслуживают, в отличие от марок:
Как выбрать?
Покупать «просто тихий» аппарат не совсем разумно. Как, впрочем, и самое мощное устройство. Прежде всего следует определиться, для какой цели будет применяться генератор:
в сезонном электропитании;
как резервная подстраховка;
как аварийное решение;
в качестве постоянного источника энергии.
Для туристов, охотников, рыбаков и части коммерческих потребителей правильнее выбирать мобильный генератор. Он же устроит и дачников. Но критически важное значение имеет мощность устройства. Она должна быть сбалансирована: слабая техника «не вытянет» задачу, а излишне сильная будет зря тратить ресурсы.
Определить необходимый показатель помогает учет коэффициента пускового тока, а также разбиение приборов на важные и не очень (пылесосы, стиральные машины, утюги, СВЧ-печи добавлять не обязательно).
Число фаз тоже весьма актуально. От однофазного электрогенератора можно запитать лишь однофазные приборы. Впрочем, для бытового и дачного применения это не слишком существенно. Трехфазные модели надо брать для оснащения стройплощадок, промышленных предприятий и их отдельных цехов. Важно: на одну фазу они выдают не более 1/3 мощности.
Еще один немаловажный аспект — применяемое топливо. Бензиновая модель позволит снабдить током дом при периодических сбоях. Эти аппараты компактны, сравнительно легки и мало шумят. Их активно используют мелкие коммерческие фирмы – как производство, так и торговля. Дизельные модификации стоят дорого, издают сильный шум, зато выдают много тока и могут работать длительное время без перерывов. Модели ценны там, где электросети отсутствуют как класс.
Экономнее и универсальнее прочих окажутся двухтопливные версии. Обычно они работают на бензине и на газе, причем переключение происходит несложно.
Баллонный сжиженный газ существенно дешевле бензина. Еще выгоднее этот режим при подсоединении к магистрали. Асинхронные устройства предназначены для электропитания под открытым небом, их же стоит применять для особо влажных помещений.
Однако проблема в том, что бесщеточные генераторы не умеют выдавать безупречно качественный ток с оптимальной синусоидой. Бытовая аппаратура и компьютеры лучше всего подпитываются синхронными аппаратами. Даже подверженность к поражению пылью оправдывается стабильными параметрами и высокими характеристиками тока. Альтернатор с медной обмоткой обойдется дороже, зато куда лучше проводит тепло и имеет отличную выходную мощность. Дополнительно стоит обратить внимание на:
наличие системы AVR (без нее скачки напряжения могут поломать телефоны, планшеты и ноутбуки);
ручной или электрический тип стартера;
наличие опции автоматического запуска (а иногда и остановки);
закрытый либо открытый корпус (первый вариант устойчивее и надежнее, но может перегреваться);
отсчет моточасов (позволяющий вовремя проводить техобслуживание);
сервисные возможности поставщика.
Какой электрогенератор выбрать смотрите далее.
Обзор электрогенератора HUTER DY6500LXA смотрите далее.
Источник